Uncertainty-Aware Deep Learning Based Deformable Registration

被引:1
|
作者
Grigorescu, Irina [1 ,2 ]
Uus, Alena [1 ,2 ]
Christiaens, Daan [1 ,3 ,4 ]
Cordero-Grande, Lucilio [1 ,2 ,6 ,7 ]
Hutter, Jana [1 ]
Batalle, Dafnis [1 ,5 ]
Edwards, A. David [1 ]
Hajnal, Joseph V. [1 ,2 ]
Modat, Marc [2 ]
Deprez, Maria [1 ,2 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, Ctr Dev Brain, London, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, Biomed Engn Dept, London, England
[3] Katholieke Univ Leuven, Dept Elect Engn, Leuven, Belgium
[4] Katholieke Univ Leuven, Dept ESAT PSI, Leuven, Belgium
[5] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Forens & Neurodev Sci, London, England
[6] Univ Politecn Madrid, Biomed Image Technol, ETSI Telecomunicac, Madrid, Spain
[7] CIBER BNN, Madrid, Spain
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Multi-channel registration; Uncertainty; Certainty maps; BRAIN MRI; RECONSTRUCTION;
D O I
10.1007/978-3-030-87735-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an uncertainty-aware deep learning deformable image registration solution for magnetic resonance imaging multi-channel data. In our proposed framework, the contributions of structural and microstructural data to the displacement field are weighted with spatially varying certainty maps. We produce certainty maps by employing a conditional variational autoencoder image registration network, which enables us to generate uncertainty maps in the deformation field itself. Our approach is quantitatively evaluated on pairwise registrations of 36 neonates to a standard structural and/or microstructural template, and compared with models trained on either single modality, or both modalities together. Our results show that by incorporating uncertainty while fusing the two modalities, we achieve superior alignment in cortical gray matter and white matter regions, while also achieving a good alignment of the white matter tracts. In addition, for each of our trained models, we show examples of average uncertainty maps calculated for 10 neonates scanned at 40 weeks post-menstrual age.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 50 条
  • [31] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Li, Chenxin
    Ma, Wenao
    Sun, Liyan
    Ding, Xinghao
    Huang, Yue
    Wang, Guisheng
    Yu, Yizhou
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04): : 3151 - 3164
  • [32] An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management
    Lork, Clement
    Li, Wen-Tai
    Qin, Yan
    Zhou, Yuren
    Yuen, Chau
    Tushar, Wayes
    Saha, Tapan K.
    [J]. APPLIED ENERGY, 2020, 276
  • [33] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Chenxin Li
    Wenao Ma
    Liyan Sun
    Xinghao Ding
    Yue Huang
    Guisheng Wang
    Yizhou Yu
    [J]. Neural Computing and Applications, 2022, 34 : 3151 - 3164
  • [34] Uncertainty-aware point cloud segmentation for infrastructure projects using Bayesian deep learning
    Vassilev, Hristo
    Laska, Marius
    Blankenbach, Joerg
    [J]. AUTOMATION IN CONSTRUCTION, 2024, 164
  • [35] Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
    Westermann, Paul
    Evins, Ralph
    [J]. ENERGY AND AI, 2021, 3
  • [36] NPCL: Neural Processes for Uncertainty-Aware Continual Learning
    Jha, Saurav
    Gong, Dong
    Zhao, He
    Yao, Lina
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] DR|GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images
    Araujo, Teresa
    Aresta, Guilherme
    Mendonca, Luis
    Penas, Susana
    Maia, Carolina
    Carneiro, Angela
    Maria Mendonca, Ana
    Campilho, Aurelio
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 63
  • [38] Uncertainty-aware machine learning for high energy physics
    Ghosh, Aishik
    Nachman, Benjamin
    Whiteson, Daniel
    [J]. PHYSICAL REVIEW D, 2021, 104 (05)
  • [39] Diabetic retinopathy prediction based on deep learning and deformable registration
    Mohammed Oulhadj
    Jamal Riffi
    Khodriss Chaimae
    Adnane Mohamed Mahraz
    Bennis Ahmed
    Ali Yahyaouy
    Chraibi Fouad
    Abdellaoui Meriem
    Benatiya Andaloussi Idriss
    Hamid Tairi
    [J]. Multimedia Tools and Applications, 2022, 81 : 28709 - 28727
  • [40] Diabetic retinopathy prediction based on deep learning and deformable registration
    Oulhadj, Mohammed
    Riffi, Jamal
    Chaimae, Khodriss
    Mahraz, Adnane Mohamed
    Ahmed, Bennis
    Yahyaouy, Ali
    Fouad, Chraibi
    Meriem, Abdellaoui
    Idriss, Benatiya Andaloussi
    Tairi, Hamid
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28709 - 28727