The Port-Hamiltonian Structure of Continuum Mechanics

被引:1
|
作者
Rashad, Ramy [1 ,2 ]
Stramigioli, Stefano [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Control & Instrumentat Engn Dept, Dhahran, Saudi Arabia
[2] Univ Twente, Robot & Mechatron Dept, Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Port-Hamiltonian; Dirac structures; Bundle-valued forms; Exterior calculus; SEMIDIRECT PRODUCTS; DEFORMATIONS; EQUATIONS; GEOMETRY; SYSTEMS; STRESS; BEAM;
D O I
10.1007/s00332-025-10130-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a novel approach to the geometric formulation of solid and fluid mechanics within the port-Hamiltonian framework, which extends the standard Hamiltonian formulation to non-conservative and open dynamical systems. Leveraging Dirac structures, instead of symplectic or Poisson structures, this formalism allows the incorporation of energy exchange within the spatial domain or through its boundary, which allows for a more comprehensive description of continuum mechanics. Building upon our recent work in describing nonlinear elasticity using exterior calculus and bundle-valued differential forms, this paper focuses on the systematic derivation of port-Hamiltonian models for solid and fluid mechanics in the material, spatial, and convective representations using Hamiltonian reduction theory. This paper also discusses constitutive relations for stress within this framework including hyper-elasticity, for both finite and infinitesimal strains, as well as viscous fluid flow governed by the Navier-Stokes equations.
引用
收藏
页数:58
相关论文
共 50 条
  • [41] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [42] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [43] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [44] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [45] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [46] PORT-HAMILTONIAN DYNAMIC MODE DECOMPOSITION*
    Morandin, Riccardo
    Nicodemus, Jonas
    Unger, Benjamin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : A1690 - A1710
  • [47] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [48] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [49] Application of data-driven realizations to port-Hamiltonian flexible structure
    Cherifi, Karim
    Brugnoli, Andrea
    IFAC PAPERSONLINE, 2021, 54 (19): : 180 - 185
  • [50] Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos
    Polyuga, Rostyslav V.
    van der Schaft, Arjan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (06) : 1458 - 1462