The Port-Hamiltonian Structure of Continuum Mechanics

被引:1
|
作者
Rashad, Ramy [1 ,2 ]
Stramigioli, Stefano [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Control & Instrumentat Engn Dept, Dhahran, Saudi Arabia
[2] Univ Twente, Robot & Mechatron Dept, Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Port-Hamiltonian; Dirac structures; Bundle-valued forms; Exterior calculus; SEMIDIRECT PRODUCTS; DEFORMATIONS; EQUATIONS; GEOMETRY; SYSTEMS; STRESS; BEAM;
D O I
10.1007/s00332-025-10130-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a novel approach to the geometric formulation of solid and fluid mechanics within the port-Hamiltonian framework, which extends the standard Hamiltonian formulation to non-conservative and open dynamical systems. Leveraging Dirac structures, instead of symplectic or Poisson structures, this formalism allows the incorporation of energy exchange within the spatial domain or through its boundary, which allows for a more comprehensive description of continuum mechanics. Building upon our recent work in describing nonlinear elasticity using exterior calculus and bundle-valued differential forms, this paper focuses on the systematic derivation of port-Hamiltonian models for solid and fluid mechanics in the material, spatial, and convective representations using Hamiltonian reduction theory. This paper also discusses constitutive relations for stress within this framework including hyper-elasticity, for both finite and infinitesimal strains, as well as viscous fluid flow governed by the Navier-Stokes equations.
引用
收藏
页数:58
相关论文
共 50 条
  • [1] Overcoming the dissipation obstacle with Bicomplex Port-Hamiltonian Mechanics
    Hutters, Coen
    Mendel, Max
    IFAC PAPERSONLINE, 2020, 53 (02): : 5573 - 5578
  • [2] Port-Hamiltonian Systems: Structure Recognition and Applications
    Salnikov, V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (02) : 197 - 201
  • [3] Remarks on the geometric structure of port-Hamiltonian systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2024, 58 (06): : 274 - 279
  • [4] Theory and Implementation of Coupled Port-Hamiltonian Continuum and Lumped Parameter Models
    Finbar J. Argus
    Chris P. Bradley
    Peter J. Hunter
    Journal of Elasticity, 2021, 145 : 339 - 382
  • [5] Theory and Implementation of Coupled Port-Hamiltonian Continuum and Lumped Parameter Models
    Argus, Finbar J.
    Bradley, Chris P.
    Hunter, Peter J.
    JOURNAL OF ELASTICITY, 2021, 145 (1-2) : 339 - 382
  • [6] Structure Preserving Observer Design for Port-Hamiltonian Systems
    Yaghmaei, Abolfazl
    Yazdanpanah, Mohammad Javad
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (03) : 1214 - 1220
  • [7] Structure Preserving Adaptive Control of Port-Hamiltonian Systems
    Dirksz, Daniel A.
    Scherpen, Jacquelien M. A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (11) : 2879 - 2885
  • [8] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [9] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [10] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937