Design and Implementation of Elliptical Ultrasonic Vibrational Piezoelectric Transducer

被引:0
|
作者
Wu, Zhizhong [1 ]
Zhang, Zhao [1 ]
Wu, Deguang [1 ]
Chen, Yuanhang [1 ]
Hu, Fan [1 ]
Guo, Chenxin [1 ]
Tang, Lijun [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Xianfeng St, Changsha 410114, Hunan, Peoples R China
关键词
Elliptical ultrasonic vibration; Piezoelectric transducer; CNN; NSGA; Electromechanical Coupling Coefficient; ACTUATOR; MODEL;
D O I
10.1007/s42417-024-01717-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
PurposeElliptical ultrasonic vibration is an essential auxiliary method for reducing milling forces and temperatures during machining processes. Rapidly determining the optimal geometric parameters of elliptical ultrasonic transducers for achieving effective vibration is of paramount significance.MethodsThis paper introduces a geometric modeling method for elliptical ultrasonic vibration piezoelectric transducers based on transfer matrice and convolutional neural network (CNN). The method employs the transfer matrix method to establish a composite beam bending vibration model of the transducer and constructs a dataset of the electromechanical coupling coefficient (ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document}) for the piezoelectric ceramic in the X-direction (X-PZT), which corresponds to the transducer model parameters, including the length of the tail mass, the length of the X-PZT, and the length and diameter of the horn. CNN trained the dataset to obtain the ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} objective function. The Non-Dominated Sorting Genetic Algorithm (NSGA) is used to find the optimal solution for the objective function.ResultsThe results indicate that this method efficiently attains the optimal 2nd-order bending vibration ke value of the transducer to be 21.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} , with a corresponding ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} value of 22.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} achieved through finite element simulation, resulting in an error of 0.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. Furthermore, field displacement (Amp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{mp}$$\end{document}) and impedance model (|Z|) curves for various transducer bending vibrations were obtained, demonstrating that the error associated with the 2nd-order theoretical analyses and finite element simulation results is less than that of the 1st-order, with the maximum error in the 2nd-order ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} not surpassing 4.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}.ConclusionDesign and implementation of an elliptical ultrasonic vibrational transducer were carried out based on the theoretical and simulation studies. The effectiveness of the theoretical model and simulations was experimentally validated through impedance analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air
    Ahn, Hongmin
    Jin, JaeHyeok
    Moon, Wonkyu
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2020, 39 (02): : 87 - 97
  • [42] Broadband Piezoelectric Micromachined Ultrasonic Transducer (pMUT) Using Mode-Merged Design
    Wang, Tao
    Kobayashi, Takeshi
    Lee, Chengkuo
    2015 IEEE 10TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2015, : 238 - 242
  • [43] Model-based design and implementation of an ultrasonic elliptical vibration cutting device
    Hu, L. (hlhchina@163.com), 1600, Trans Tech Publications Ltd (621):
  • [44] Design of an ultrasonic piezoelectric transducer having double-linked diaphragms for parametric speakers
    Kuroda, Jun
    Oikawa, Yasuhiro
    Yamasaki, Yoshio
    Sato, Shigeo
    Komoda, Motoyoshi
    Onishi, Yasuharu
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2015, 36 (05) : 385 - 396
  • [45] Design and Fabrication of Flexible and Transparent Piezoelectric Micromachined Ultrasonic Transducer Based on Mica Substrates
    Liu, Wei
    Li, Xiaoniu
    Wu, Dawei
    Yu, Ting
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 785 - 787
  • [46] Piezoelectric Micromachined Ultrasonic Transducer Using Silk Piezoelectric Thin Film
    Joseph, Jose
    Singh, Shiv Govind
    Vanjari, Siva Rama Krishna
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) : 749 - 752
  • [47] Optimal design of an ultrasonic transducer
    H. H. Hansen
    Structural optimization, 1997, 14 : 150 - 157
  • [48] Induction ultrasonic piezoelectric transducers: Theoretical analysis of the operation of a piezoelectric transducer
    A. E. Glagolev
    Russian Journal of Nondestructive Testing, 2009, 45 : 267 - 272
  • [49] Design and simulation of an ultrasonic transducer
    Yu, ZX
    Shi, YR
    Hsu, HY
    Kong, LX
    MICROELECTRONICS: DESIGN, TECHNOLOGY, AND PACKAGING II, 2006, 6035
  • [50] Induction ultrasonic piezoelectric transducers: Theoretical analysis of the operation of a piezoelectric transducer
    Glagolev, A. E.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2009, 45 (04) : 267 - 272