Design and Implementation of Elliptical Ultrasonic Vibrational Piezoelectric Transducer

被引:0
|
作者
Wu, Zhizhong [1 ]
Zhang, Zhao [1 ]
Wu, Deguang [1 ]
Chen, Yuanhang [1 ]
Hu, Fan [1 ]
Guo, Chenxin [1 ]
Tang, Lijun [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Xianfeng St, Changsha 410114, Hunan, Peoples R China
关键词
Elliptical ultrasonic vibration; Piezoelectric transducer; CNN; NSGA; Electromechanical Coupling Coefficient; ACTUATOR; MODEL;
D O I
10.1007/s42417-024-01717-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
PurposeElliptical ultrasonic vibration is an essential auxiliary method for reducing milling forces and temperatures during machining processes. Rapidly determining the optimal geometric parameters of elliptical ultrasonic transducers for achieving effective vibration is of paramount significance.MethodsThis paper introduces a geometric modeling method for elliptical ultrasonic vibration piezoelectric transducers based on transfer matrice and convolutional neural network (CNN). The method employs the transfer matrix method to establish a composite beam bending vibration model of the transducer and constructs a dataset of the electromechanical coupling coefficient (ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document}) for the piezoelectric ceramic in the X-direction (X-PZT), which corresponds to the transducer model parameters, including the length of the tail mass, the length of the X-PZT, and the length and diameter of the horn. CNN trained the dataset to obtain the ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} objective function. The Non-Dominated Sorting Genetic Algorithm (NSGA) is used to find the optimal solution for the objective function.ResultsThe results indicate that this method efficiently attains the optimal 2nd-order bending vibration ke value of the transducer to be 21.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} , with a corresponding ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} value of 22.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} achieved through finite element simulation, resulting in an error of 0.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. Furthermore, field displacement (Amp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{mp}$$\end{document}) and impedance model (|Z|) curves for various transducer bending vibrations were obtained, demonstrating that the error associated with the 2nd-order theoretical analyses and finite element simulation results is less than that of the 1st-order, with the maximum error in the 2nd-order ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_e$$\end{document} not surpassing 4.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}.ConclusionDesign and implementation of an elliptical ultrasonic vibrational transducer were carried out based on the theoretical and simulation studies. The effectiveness of the theoretical model and simulations was experimentally validated through impedance analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] STUDY OF THE SANDWICHED PIEZOELECTRIC ULTRASONIC TORSIONAL TRANSDUCER
    LIN, SY
    ULTRASONICS, 1994, 32 (06) : 461 - 465
  • [32] The sandwiched radial composite piezoelectric ultrasonic transducer
    Liu, Shiqing
    Xu, Long
    Zhang, Zhiliang
    Chen, Zhaojiang
    Shen, Jianguo
    Shengxue Xuebao/Acta Acustica, 2014, 39 (01): : 104 - 110
  • [33] Study on the prestressed sandwich piezoelectric ceramic ultrasonic transducer of torsional-flexural composite vibrational mode
    Lin, SY
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 112 (02): : 511 - 517
  • [34] MEDICAL PIEZOELECTRIC ULTRASONIC TRANSDUCER AND THEIR PERFORMANCE ANALYSES
    Yang, Lin-zhi
    Li, Quan-lu
    Ji, Yang-hong
    Geng, Jie
    Wang, Sheng-li
    Cai, Chun-fang
    PROCEEDINGS OF THE 2008 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2008, : 488 - +
  • [35] Optimization of the performance of the sandwich piezoelectric ultrasonic transducer
    Lin, SY
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (01): : 182 - 186
  • [36] Fabrication of thin film piezoelectric ultrasonic transducer
    Mohamed, H
    Polla, D
    Ebbini, E
    Zurn, S
    PROCEEDINGS OF THE 44TH IEEE 2001 MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2001, : 726 - 729
  • [38] Design of sandwich piezoelectric transducer
    Li, Fangrui
    Wang, Tongyu
    INTERNATIONAL CONFERENCE ON MECHANICAL DESIGN AND SIMULATION (MDS 2022), 2022, 12261
  • [39] Piezoelectric transducer design for an ultrasonic scalpel with enhanced dexterity for minimally invasive surgical robots
    Li, Jianmin
    Liu, Haikuan
    Li, Jinhua
    Yang, Yingkan
    Wang, Shuxin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2020, 234 (07) : 1271 - 1285
  • [40] Design of 2D orthogonal composite sandwich piezoelectric ultrasonic transducer excited by four piezoelectric stacks
    Xu, Long
    Zhang, Dan
    Chen, Yibo
    Shengxue Xuebao/Acta Acustica, 2023, 48 (04): : 882 - 889