Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments

被引:2
|
作者
Hao, Shuang [1 ,2 ]
Guthrie, Brian [3 ]
Kim, Soo-Kyung [4 ]
Balanda, Sergej [5 ]
Kubicek, Jan [5 ]
Murtaza, Babar [6 ]
Khan, Naim A. [6 ]
Khakbaz, Pouyan [3 ]
Su, Judith [1 ,2 ]
Goddard, William A., III [4 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[3] Cargill Inc, Global Core Res & Dev Grp, 14800 28th Ave N, Plymouth, MN 55447 USA
[4] CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
[5] Cube Biotech, Creat Campus Monheim,Creat Campus Allee 12, D-40789 Monheim, Germany
[6] Univ Bourgogne, UB Ctr Translat & Mol Med CTM 1231, Physiol Nutr & Toxicol, F-21000 Dijon, France
来源
COMMUNICATIONS CHEMISTRY | 2024年 / 7卷 / 01期
关键词
MOLECULAR-MECHANISM; ACTIVATION MECHANISM; ACCURATE DOCKING; RATE CONSTANTS; PROTEIN; T1R3; DYNAMICS; DOMAIN; CELLS; IDENTIFICATION;
D O I
10.1038/s42004-024-01324-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the G alpha protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor. Sucrose and other non-caloric sweeteners can bind to different domains of the heterodimeric sweet taste receptor (T1R2/T1R3), resulting in different levels of sweetness. Here, the authors investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites of T1R2/T1R3 through binding experiments and computational docking studies, revealing multiple binding sites for the tested ligands and structural- function correlations of ligand-receptor interactions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] THE EXPRESSION OF T1R2 TASTE RECEPTOR IN HUMAN AND RAT URINARY BLADDER
    Kapoor, S.
    Elliott, R. A.
    Tincello, D. G.
    INTERNATIONAL UROGYNECOLOGY JOURNAL, 2009, 20 : S162 - S163
  • [42] Expression of the sweet receptor protein, T1R3, in the human liver and pancreas
    Taniguchi, K
    JOURNAL OF VETERINARY MEDICAL SCIENCE, 2004, 66 (11): : 1311 - 1314
  • [43] Mouse neutrophils express functional umami taste receptor T1R1/T1R3
    Lee, NaHye
    Jung, Young Su
    Lee, Ha Young
    Kang, NaNa
    Park, Yoo Jung
    Hwang, Jae Sam
    Bahk, Young Yil
    Koo, JaeHyung
    Bae, Yoe-Sik
    BMB REPORTS, 2014, 47 (11) : 649 - 654
  • [44] l-Theanine elicits umami taste via the T1R1 + T1R3 umami taste receptor
    Masataka Narukawa
    Yasuka Toda
    Tomoya Nakagita
    Yukako Hayashi
    Takumi Misaka
    Amino Acids, 2014, 46 : 1583 - 1587
  • [45] T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to polycose: implications for saccharide taste receptors in mice
    Treesukosol, Yada
    Blonde, Ginger D.
    Spector, Alan C.
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2009, 296 (04) : R855 - R865
  • [46] Two Distinct Determinants of Ligand Specificity in T1R1/T1R3 (the Umami Taste Receptor)
    Toda, Yasuka
    Nakagita, Tomoya
    Hayakawa, Takashi
    Okada, Shinji
    Narukawa, Masataka
    Imai, Hiroo
    Ishimaru, Yoshiro
    Misaka, Takumi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (52) : 36863 - 36877
  • [47] Qingqianliutianosides A-E: five new sweet dammarane triterpenoid glycosides derived from the leaves of Cyclocarya paliurus - identification, characterization and interactions with T1R2/T1R3 sweet taste receptors
    Guo, Tingsi
    Yang, Yong
    Liang, Ling
    Huang, Qin
    Hu, Qiqi
    Xie, Qingling
    Yuan, Hanwen
    Chen, Guangyu
    Wang, Wei
    Jian, Yuqing
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2025, 105 (02) : 1216 - 1227
  • [48] Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3
    Jiang, PH
    Cui, M
    Zhao, BH
    Snyder, LA
    Benard, LMJ
    Osman, R
    Max, M
    Margolskee, RF
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (40) : 34296 - 34305
  • [49] Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium
    Harrington, Elizabeth O.
    Vang, Alexander
    Braza, Julie
    Shil, Aparna
    Chichger, Havovi
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2018, 314 (01) : L165 - L176
  • [50] Interaction of the N-terminal Domain of Human T1R2 Taste Receptor with Brazzein, a Sweet-tasting Protein
    Laffitte, Anni
    Neiers, Fabrice
    Seigneuric, Renaud
    Briand, Loic
    CHEMICAL SENSES, 2015, 40 (07) : 615 - 615