Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments

被引:2
|
作者
Hao, Shuang [1 ,2 ]
Guthrie, Brian [3 ]
Kim, Soo-Kyung [4 ]
Balanda, Sergej [5 ]
Kubicek, Jan [5 ]
Murtaza, Babar [6 ]
Khan, Naim A. [6 ]
Khakbaz, Pouyan [3 ]
Su, Judith [1 ,2 ]
Goddard, William A., III [4 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[3] Cargill Inc, Global Core Res & Dev Grp, 14800 28th Ave N, Plymouth, MN 55447 USA
[4] CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
[5] Cube Biotech, Creat Campus Monheim,Creat Campus Allee 12, D-40789 Monheim, Germany
[6] Univ Bourgogne, UB Ctr Translat & Mol Med CTM 1231, Physiol Nutr & Toxicol, F-21000 Dijon, France
来源
COMMUNICATIONS CHEMISTRY | 2024年 / 7卷 / 01期
关键词
MOLECULAR-MECHANISM; ACTIVATION MECHANISM; ACCURATE DOCKING; RATE CONSTANTS; PROTEIN; T1R3; DYNAMICS; DOMAIN; CELLS; IDENTIFICATION;
D O I
10.1038/s42004-024-01324-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the G alpha protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor. Sucrose and other non-caloric sweeteners can bind to different domains of the heterodimeric sweet taste receptor (T1R2/T1R3), resulting in different levels of sweetness. Here, the authors investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites of T1R2/T1R3 through binding experiments and computational docking studies, revealing multiple binding sites for the tested ligands and structural- function correlations of ligand-receptor interactions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Unnatural Tripeptides as Potent Positive Allosteric Modulators of T1R2/T1R3
    Yamada, Kei
    Nakazawa, Masakazu
    Matsumoto, Kayo
    Tagami, Uno
    Hirokawa, Takatsugu
    Homma, Keisuke
    Mori, Suguru
    Matsumoto, Ryo
    Saikawa, Wakana
    Kitajima, Seiji
    ACS MEDICINAL CHEMISTRY LETTERS, 2019, 10 (05): : 800 - 805
  • [22] T1R3 is a Receptor for the Taste of Calcium and Magnesium
    Tordoff, Michael G.
    Shao, Hongguang
    Alarcon, Laura K.
    Margolskee, Robert F.
    Mosinger, Bedrich
    Bachmanov, Alexander A.
    Reed, Danielle R.
    McCaughey, Stuart
    CHEMICAL SENSES, 2008, 33 (08) : S113 - S114
  • [23] Systematic analysis reveals novel insight into the molecular determinants of function, diversity and evolution of sweet taste receptors T1R2/T1R3 in primates
    Wang, Congrui
    Liu, Yi
    Cui, Meng
    Liu, Bo
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [24] Promoter Analysis of Human Sweet Receptor, T1R2 Gene
    Toyono, Takashi
    Seta, Yuji
    Kataoka, Shinji
    Toyoshima, Kuniaki
    CHEMICAL SENSES, 2009, 34 (02) : J9 - J9
  • [25] Oxaliplatin Alters Expression of T1R2 Receptor and Sensitivity to Sweet Taste in Rats
    Ohishi, Akihiro
    Nishida, Kentaro
    Yamanaka, Yuri
    Miyata, Ai
    Ikukawa, Akiko
    Yabu, Miharu
    Miyamoto, Karin
    Bansho, Saho
    Nagasawa, Kazuki
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2016, 39 (04) : 578 - 586
  • [26] Design, synthesis and evaluation of unnatural peptides as T1R2/T1R3 PAMs
    Yamada, Kei
    Matsumoto, Ryo
    Suzuki, Yumiko
    Mori, Suguru
    Kitajima, Seiji
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2020, 30 (08)
  • [27] Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins
    Liu, Bo
    Ha, Matthew
    Meng, Xuan-Yu
    Khaleduzzaman, Mohammed
    Zhang, Zhe
    Li, Xia
    Cui, Meng
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 427 (02) : 431 - 437
  • [28] Human Genetic Polymorphisms in T1R1 and T1R3 Taste Receptor Subunits Affect Their Function
    Raliou, Mariam
    Grauso, Marta
    Hoffmann, Brice
    Schlegel-Le-Poupon, Claire
    Nespoulous, Claude
    Debat, Helene
    Belloir, Christine
    Wiencis, Anna
    Sigoillot, Maud
    Bano, Singh Preet
    Trotier, Didier
    Pernollet, Jean-Claude
    Montmayeur, Jean-Pierre
    Faurion, Annick
    Briand, Loic
    CHEMICAL SENSES, 2011, 36 (06) : 527 - 537
  • [29] T1R2/T1R3 Is a Novel Target for Improving Insulin Sensitivity and Glucose Metabolism
    Kitahara, Yoshiro
    Ogawa, Shimpei
    Kawanabe, Haruka
    Kitajima, Seiji
    Ohsumi, Koji
    DIABETES, 2016, 65 : A498 - A498
  • [30] T1R3 taste receptor is critical for sucrose but not Polycose taste
    Zukerman, Steven
    Glendinning, John I.
    Margolskee, Robert F.
    Sclafani, Anthony
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2009, 296 (04) : R866 - R876