Dynamical modeling of Lumpy Skin Disease using Atangana–Baleanu derivative and optimal control analysis

被引:0
|
作者
Azhar Iqbal Kashif Butt [1 ]
机构
[1] King Faisal University,Department of Mathematics and Statistics, College of Science
关键词
Lumpy Skin Disease; Atangana–Baleanu derivative; Fractional model; Optimal control; Vaccination; Quarantine;
D O I
10.1007/s40808-024-02239-1
中图分类号
学科分类号
摘要
Lumpy Skin Disease (LSD) poses a significant challenge to cattle health and causes substantial economic losses in affected regions. This study introduces a new fractional model of LSD dynamics incorporating the Atangana–Baleanu derivative to capture memory effects and complex transmission patterns of the disease. The use of this derivative provides a more accurate representation of disease dynamics compared to traditional integer order models. The model demonstrates a unique, positive, and bounded solution. The basic reproduction number, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}, is calculated to assess disease transmissibility. Sensitivity analysis is performed to identify key parameters influencing R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_0$$\end{document}. Optimal control strategies involving vaccination and quarantine are formulated and numerically analyzed to assess their efficacy. A comparative analysis is carried out across three different scenarios: vaccination alone, quarantine alone, and the combination of both strategies. Our findings indicate that a combined approach of vaccination and quarantine is the most effective strategy for minimizing disease spread. This study not only provides valuable insights for practical disease management but also emphasizes the critical importance of implementing control measures to combat the spread of Lumpy Skin Disease.
引用
下载
收藏
相关论文
共 50 条
  • [11] Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative
    El-Dessoky, M. M.
    Khan, Muhammad Altaf
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 729 - 746
  • [12] Modeling and analysis of a fractional anthroponotic cutaneous leishmania model with Atangana-Baleanu derivative
    Haq, Ikramul
    Khan, Amir
    Ahmad, Saeed
    Ali, Amir
    Rahman, Mati Ur
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2022, 25 (15) : 1722 - 1743
  • [13] An application of a fuzzy system for solving time delay fractional optimal control problems with Atangana–Baleanu derivative
    Mortezaee, Marzieh
    Ghovatmand, Mehdi
    Nazemi, Alireza
    Optimal Control Applications and Methods, 2022, 43 (06) : 1753 - 1777
  • [14] Analysis of a basic SEIRA model with Atangana-Baleanu derivative
    Ucar, Sumeyra
    AIMS MATHEMATICS, 2020, 5 (02): : 1411 - 1424
  • [16] An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative
    Kolebaje, Olusola
    Popoola, Oyebola
    Khan, Muhammad Altaf
    Oyewande, Oluwole
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [17] Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
    Prakasha, D. G.
    Veeresha, P.
    Baskonus, Haci Mehmet
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [18] Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
    D. G. Prakasha
    P. Veeresha
    Haci Mehmet Baskonus
    The European Physical Journal Plus, 134
  • [19] Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative
    Pleumpreedaporn, Songkran
    Pleumpreedaporn, Chanidaporn
    Kongson, Jutarat
    Thaiprayoon, Chatthai
    Alzabut, Jehad
    Sudsutad, Weerawat
    MATHEMATICS, 2022, 10 (09)
  • [20] Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications
    Syam M.I.
    Al-Refai M.
    Chaos, Solitons and Fractals: X, 2019, 2