TWO-DIMENSIONAL FRACTIONAL WAVE EQUATION VIA A NEW NUMERICAL APPROACH

被引:0
|
作者
Batiha, Iqbal M. [1 ,2 ]
Jebril, Iqbal H. [1 ]
Anakira, Nidal [3 ]
Al-Nana, Abeer A. [4 ]
Batyha, Radwan [5 ]
Momani, Shaher [2 ,6 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, POB 130, Amman 11733, Jordan
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Sohar Univ, Fac Educ & Arts, Sohar, Oman
[4] Prince Sattam Bin Abdulaziz Univ, Dept Math, Alkharj 11942, Saudi Arabia
[5] Appl Sci Univ, Dept Comp Sci, Amman 11937, Jordan
[6] Univ Jordan, Dept Math, Amman 11942, Jordan
关键词
Two-dimensional fractional wave equation; Fractional calculus; Lagrange interpolating polynomial; Fractional difference formula;
D O I
10.24507/ijicic.20.04.1045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main goal of this work is to solve the fractional wave equation in two dimensions numerically with the use of some novel fractional formulas. In particular, the proposed approach used to deal with the fractional wave equation introduces two novel fractional difference formulas for approximating the Caputo differentiator of order delta and 2 delta , respectively, where0<delta <= 1. Such formulas, which are derived based on the Lagrange interpolating polynomial, can generate a system of linear equations that can be solved numerically to obtain, ultimately, good approximate solutions to the fractional wave equation for different fractional-order values.
引用
收藏
页码:1045 / 1059
页数:15
相关论文
共 50 条
  • [1] Numerical solutions of two-dimensional fractional Schrodinger equation
    Mittal, A. K.
    Balyan, L. K.
    MATHEMATICAL SCIENCES, 2020, 14 (02) : 129 - 136
  • [2] Numerical solutions of two-dimensional fractional Schrodinger equation
    A. K. Mittal
    L. K. Balyan
    Mathematical Sciences, 2020, 14 : 129 - 136
  • [3] Fractional order control of the two-dimensional wave equation
    Sirota, Lea
    Halevi, Yoram
    AUTOMATICA, 2015, 59 : 152 - 163
  • [4] Numerical Identification of the Fractional Derivatives in the Two-Dimensional Fractional Cable Equation
    Yu, Bo
    Jiang, Xiaoyun
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 252 - 272
  • [5] Numerical Identification of the Fractional Derivatives in the Two-Dimensional Fractional Cable Equation
    Bo Yu
    Xiaoyun Jiang
    Journal of Scientific Computing, 2016, 68 : 252 - 272
  • [6] A new approach of superconvergence analysis for two-dimensional time fractional diffusion equation
    Shi, Dongyang
    Yang, Huaijun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 3012 - 3023
  • [7] A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach
    Yang, Xiao-Jun
    Tenreiro Machado, J. A.
    Srivastava, H. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 143 - 151
  • [8] An implicit numerical method for the two-dimensional fractional percolation equation
    Chen, S.
    Liu, F.
    Turner, I.
    Anh, V.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4322 - 4331
  • [9] Numerical Solution of Fractional Diffusion Wave Equation and Fractional Klein-Gordon Equation via Two-Dimensional Genocchi Polynomials with a Ritz-Galerkin Method
    Kanwal, Afshan
    Phang, Chang
    Iqbal, Umer
    COMPUTATION, 2018, 6 (03):
  • [10] Analysis and numerical approximation of the fractional-order two-dimensional diffusion-wave equation
    Rafaqat, Kanza
    Naeem, Muhammad
    Akgul, Ali
    Hassan, Ahmed M.
    Abdullah, Farah Aini
    Ali, Umair
    FRONTIERS IN PHYSICS, 2023, 11