Tantalum airbridges for scalable superconducting quantum processors

被引:1
|
作者
Bu, Kunliang [1 ]
Huai, Sainan [1 ]
Zhang, Zhenxing [1 ]
Li, Dengfeng [1 ]
Li, Yuan [1 ]
Hu, Jingjing [1 ]
Yang, Xiaopei [1 ]
Dai, Maochun [1 ]
Cai, Tianqi [1 ]
Zheng, Yi-Cong [1 ]
Zhang, Shengyu [1 ]
机构
[1] Tencent, Tencent Quantum Lab, Shenzhen, Guangdong, Peoples R China
关键词
D O I
10.1038/s41534-025-00972-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unique property of tantalum, particularly its exceptional resistance to both acid and alkali, makes it promising for superconducting quantum processors. Here, we propose a novel lift-off method for fabricating tantalum airbridges with separate or fully-capped structures. This method introduces an aluminum film as a barrier layer to separate two layers of photoresist, which is then etched away before depositing tantalum film. We experimentally characterize these tantalum airbridges as control line jumpers, ground plane crossovers and coupling elements, and further validate the overall adaptability by a 13-qubit quantum processor with a median T1 exceeding 100 mu s. The median single-qubit gate fidelity is measured at 99.95(2)% for isolated Randomized Benchmarking and 99.94(2)% for the simultaneous one. Additionally, the experimental achievement of airbridge coupling with a controlled-Z gate fidelity surpassing 99.2(2)% in a separate two-qubit quantum chip may facilitate scalable quantum computation and quantum error correction with entirely tantalum elements.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Experimentally realizable scalable quantum computing using superconducting qubits
    You, JQ
    Tsai, JS
    Nori, F
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 18 (1-3): : 35 - 36
  • [42] Scalable and customizable arbitrary waveform generator for superconducting quantum computing
    Lin, Jin
    Liang, Fu-Tian
    Xu, Yu
    Sun, Li-Hua
    Guo, Cheng
    Liao, Sheng-Kai
    Peng, Cheng-Zhi
    AIP ADVANCES, 2019, 9 (11)
  • [43] Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime
    Stassi, Roberto
    Cirio, Mauro
    Nori, Franco
    NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [44] A scalable readout system for a superconducting adiabatic quantum optimization system
    Berkley, A. J.
    Johnson, M. W.
    Bunyk, P.
    Harris, R.
    Johansson, J.
    Lanting, T.
    Ladizinsky, E.
    Tolkacheva, E.
    Amin, M. H. S.
    Rose, G.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (10):
  • [45] A scalable control system for a superconducting adiabatic quantum optimization processor
    Johnson, M. W.
    Bunyk, P.
    Maibaum, F.
    Tolkacheva, E.
    Berkley, A. J.
    Chapple, E. M.
    Harris, R.
    Johansson, J.
    Lanting, T.
    Perminov, I.
    Ladizinsky, E.
    Oh, T.
    Rose, G.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (06):
  • [46] Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime
    Roberto Stassi
    Mauro Cirio
    Franco Nori
    npj Quantum Information, 6
  • [47] Scalable nonadiabatic holonomic quantum computation on a superconducting qubit lattice
    Ji, Li-Na
    Chen, Tao
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [48] Multiqubit time-varying quantum channels for NISQ-era superconducting quantum processors
    Martinez, Josu Etxezarreta
    Fuentes, Patricio
    iOlius, Antonio deMarti
    Garcia-Frias, Javier
    Fonollosa, Javier Rodriguez
    Crespo, Pedro M.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [49] Scalable Room-Temperature Quantum Processors for Probabilistic Machine Learning and Decision
    Di Salvo, Roberto
    Jiang, Zhenhua
    IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, NAECON 2024, 2024, : 142 - 146
  • [50] ICARUS-Q: Integrated control and readout unit for scalable quantum processors
    Park, Kun Hee
    Yap, Yung Szen
    Tan, Yuanzheng Paul
    Hufnagel, Christoph
    Nguyen, Long Hoang
    Lau, Karn Hwa
    Bore, Patrick
    Efthymiou, Stavros
    Carrazza, Stefano
    Budoyo, Rangga P. P.
    Dumke, Rainer
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (10):