Brain age prediction and deviations from normative trajectories in the neonatal connectome

被引:0
|
作者
Sun, Huili [1 ]
Mehta, Saloni [2 ]
Khaitova, Milana [2 ]
Cheng, Bin [3 ]
Hao, Xuejun [4 ]
Spann, Marisa [4 ,5 ]
Scheinost, Dustin [1 ,2 ,6 ,7 ,8 ]
机构
[1] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[2] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
[3] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY USA
[4] New York State Psychiat Inst & Hosp, New York, NY USA
[5] Columbia Univ, Vagelos Coll Phys & Surg, Dept Psychiat, New York, NY USA
[6] Yale Univ, Dept Stat & Data Sci, New Haven, CT USA
[7] Yale Sch Med, Child Study Ctr, New Haven, CT USA
[8] Yale Univ, Wu Tsai Inst, New Haven, CT USA
基金
欧洲研究理事会;
关键词
ANTENATAL MATERNAL ANXIETY; FUNCTIONAL CONNECTIVITY; PRETERM; NETWORKS; LANGUAGE; BEHAVIOR; INFANT; ORGANIZATION; DISORDERS; CHECKLIST;
D O I
10.1038/s41467-024-54657-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural and functional connectomes undergo rapid changes during the third trimester and the first month of postnatal life. Despite progress, our understanding of the developmental trajectories of the connectome in the perinatal period remains incomplete. Brain age prediction uses machine learning to estimate the brain's maturity relative to normative data. The difference between the individual's predicted and chronological age-or brain age gap (BAG)-represents the deviation from these normative trajectories. Here, we assess brain age prediction and BAGs using structural and functional connectomes for infants in the first month of life. We use resting-state fMRI and DTI data from 611 infants (174 preterm; 437 term) from the Developing Human Connectome Project (dHCP) and connectome-based predictive modeling to predict postmenstrual age (PMA). Structural and functional connectomes accurately predict PMA for term and preterm infants. Predicted ages from each modality are correlated. At the network level, nearly all canonical brain networks-even putatively later developing ones-generate accurate PMA prediction. Additionally, BAGs are associated with perinatal exposures and toddler behavioral outcomes. Overall, our results underscore the importance of normative modeling and deviations from these models during the perinatal period. Here, the authors show that altered brain development of infants after birth, driven by perinatal exposures, influences long-term cognitive outcomes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia
    Poortman, Simon R.
    Barendse, Marjolein E. A.
    Setiaman, Nikita
    van den Heuvel, Martijn P.
    de Lange, Siemon C.
    Hillegers, Manon H. J.
    van Haren, Neeltje E. M.
    BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE, 2024, 4 (05):
  • [32] Correction: Conceptualizing mental disorders as deviations from normative functioning
    Andre F. Marquand
    Seyed Mostafa Kia
    Mariam Zabihi
    Thomas Wolfers
    Jan K. Buitelaar
    Christian F. Beckmann
    Molecular Psychiatry, 2019, 24 : 1565 - 1565
  • [33] Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts
    Dimitrova, Ralica
    Arulkumaran, Sophie
    Carney, Olivia
    Chew, Andrew
    Falconer, Shona
    Ciarrusta, Judit
    Wolfers, Thomas
    Batalle, Dafnis
    Cordero-Grande, Lucilio
    Price, Anthony N.
    Teixeira, Rui P. A. G.
    Hughes, Emer
    Egloff, Alexia
    Hutter, Jana
    Makropoulos, Antonios
    Robinson, Emma C.
    Schuh, Andreas
    Vecchiato, Katy
    Steinweg, Johannes K.
    Macleod, Russell
    Marquand, Andre F.
    McAlonan, Grainne
    Rutherford, Mary A.
    Counsell, Serena J.
    Smith, Stephen M.
    Rueckert, Daniel
    Hajnal, Joseph, V
    O'Muircheartaigh, Jonathan
    Edwards, A. David
    CEREBRAL CORTEX, 2021, 31 (08) : 3665 - 3677
  • [34] A MODEL OF THE LEARNING OF ARM TRAJECTORIES FROM SPATIAL DEVIATIONS
    JORDAN, MI
    FLASH, T
    ARNON, Y
    JOURNAL OF COGNITIVE NEUROSCIENCE, 1994, 6 (04) : 359 - 376
  • [35] Connectivity Profile Predictive of Subcallosal Cingulate Deep Brain Stimulation Using Normative Connectome Data
    Khang, Juna
    Cha, Jungho
    Choi, Kisueng
    Riva-Posse, Patricio
    Crowell, Andrea
    Mayberg, Helen
    BIOLOGICAL PSYCHIATRY, 2021, 89 (09) : S288 - S289
  • [36] Brain functional connectome-based prediction of individual decision impulsivity
    Cai, Huanhuan
    Chen, Jingyao
    Liu, Siyu
    Zhu, Jiajia
    Yu, Yongqiang
    CORTEX, 2020, 125 : 288 - 298
  • [37] Deep Learning Architecture with Dynamically Programmed Layers for Brain Connectome Prediction
    Veeriah, Vivek
    Durvasula, Rohit
    Qi, Guo-Jun
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1205 - 1214
  • [38] Individual structural covariance connectome reveals aberrant brain developmental trajectories associated with childhood maltreatment
    Pang, Yajing
    Zhao, Shanshan
    Zhang, Zhiyuan
    Xu, Jiaying
    Gao, Lingyun
    Zhang, Rui
    Li, Zhihui
    Lu, Fengmei
    Chen, Heng
    Wu, Huawang
    Chen, Meiling
    Chen, Kexuan
    Wang, Jiaojian
    JOURNAL OF PSYCHIATRIC RESEARCH, 2025, 181 : 709 - 715
  • [39] A Normative Brain MRI Database of Neurotypical Participants from 5 to 90 Years of Age
    Treit, Sarah
    Rickard, Julia N.
    Stolz, Emily
    Solar, Kevin
    Seres, Peter
    Emery, Derek
    Beaulieu, Christian
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2023, 50 (02) : 282 - 286
  • [40] Relationships between observed and perceived deviations from normative work procedures
    Lindroos, Ola
    ERGONOMICS, 2009, 52 (12) : 1487 - 1500