Brain age prediction and deviations from normative trajectories in the neonatal connectome

被引:0
|
作者
Sun, Huili [1 ]
Mehta, Saloni [2 ]
Khaitova, Milana [2 ]
Cheng, Bin [3 ]
Hao, Xuejun [4 ]
Spann, Marisa [4 ,5 ]
Scheinost, Dustin [1 ,2 ,6 ,7 ,8 ]
机构
[1] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[2] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
[3] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY USA
[4] New York State Psychiat Inst & Hosp, New York, NY USA
[5] Columbia Univ, Vagelos Coll Phys & Surg, Dept Psychiat, New York, NY USA
[6] Yale Univ, Dept Stat & Data Sci, New Haven, CT USA
[7] Yale Sch Med, Child Study Ctr, New Haven, CT USA
[8] Yale Univ, Wu Tsai Inst, New Haven, CT USA
基金
欧洲研究理事会;
关键词
ANTENATAL MATERNAL ANXIETY; FUNCTIONAL CONNECTIVITY; PRETERM; NETWORKS; LANGUAGE; BEHAVIOR; INFANT; ORGANIZATION; DISORDERS; CHECKLIST;
D O I
10.1038/s41467-024-54657-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural and functional connectomes undergo rapid changes during the third trimester and the first month of postnatal life. Despite progress, our understanding of the developmental trajectories of the connectome in the perinatal period remains incomplete. Brain age prediction uses machine learning to estimate the brain's maturity relative to normative data. The difference between the individual's predicted and chronological age-or brain age gap (BAG)-represents the deviation from these normative trajectories. Here, we assess brain age prediction and BAGs using structural and functional connectomes for infants in the first month of life. We use resting-state fMRI and DTI data from 611 infants (174 preterm; 437 term) from the Developing Human Connectome Project (dHCP) and connectome-based predictive modeling to predict postmenstrual age (PMA). Structural and functional connectomes accurately predict PMA for term and preterm infants. Predicted ages from each modality are correlated. At the network level, nearly all canonical brain networks-even putatively later developing ones-generate accurate PMA prediction. Additionally, BAGs are associated with perinatal exposures and toddler behavioral outcomes. Overall, our results underscore the importance of normative modeling and deviations from these models during the perinatal period. Here, the authors show that altered brain development of infants after birth, driven by perinatal exposures, influences long-term cognitive outcomes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Age-related vulnerability of the human brain connectome
    Massimo Filippi
    Camilla Cividini
    Silvia Basaia
    Edoardo G. Spinelli
    Veronica Castelnovo
    Michela Leocadi
    Elisa Canu
    Federica Agosta
    Molecular Psychiatry, 2023, 28 : 5350 - 5358
  • [22] Age-related vulnerability of the human brain connectome
    Filippi, Massimo
    Cividini, Camilla
    Basaia, Silvia
    Spinelli, Edoardo G. G.
    Castelnovo, Veronica
    Leocadi, Michela
    Canu, Elisa
    Agosta, Federica
    MOLECULAR PSYCHIATRY, 2023, 28 (12) : 5350 - 5358
  • [23] Age-related vulnerability of the human brain connectome
    Cividini, C.
    Agosta, F.
    Basaia, S.
    Spinelli, E.
    Castelnovo, V.
    Leocadi, M.
    Calderaro, D.
    Canu, E.
    Filippi, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 : 320 - 320
  • [24] Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort
    Lv, Jinglei
    Di Biase, Maria
    Cash, Robin F. H.
    Cocchi, Luca
    Cropley, Vanessa L.
    Klauser, Paul
    Tian, Ye
    Bayer, Johanna
    Schmaal, Lianne
    Cetin-Karayumak, Suheyla
    Rathi, Yogesh
    Pasternak, Ofer
    Bousman, Chad
    Pantelis, Christos
    Calamante, Fernando
    Zalesky, Andrew
    MOLECULAR PSYCHIATRY, 2021, 26 (07) : 3512 - 3523
  • [25] Age-related brain deviations and aggression
    Holz, Nathalie E.
    Floris, Dorothea L.
    Llera, Alberto
    Aggensteiner, Pascal M.
    Kia, Seyed Mostafa
    Wolfers, Thomas
    Baumeister, Sarah
    Boettinger, Boris
    Glennon, Jeffrey C.
    Hoekstra, Pieter J.
    Dietrich, Andrea
    Saam, Melanie C.
    Schulze, Ulrike M. E.
    Lythgoe, David J.
    Williams, Steve C. R.
    Santosh, Paramala
    Rosa-Justicia, Mireia
    Bargallo, Nuria
    Castro-Fornieles, Josefina
    Arango, Celso
    Penzol, Maria J.
    Walitza, Susanne
    Meyer-Lindenberg, Andreas
    Zwiers, Marcel
    Franke, Barbara
    Buitelaar, Jan
    Naaijen, Jilly
    Brandeis, Daniel
    Beckmann, Christian
    Banaschewski, Tobias
    Marquand, Andre F.
    PSYCHOLOGICAL MEDICINE, 2023, 53 (09) : 4012 - 4021
  • [26] Development of the brain functional connectome follows puberty-dependent nonlinear trajectories
    Gracia-Tabuenca, Zeus
    Beatriz Moreno, Martha
    Barrios, Fernando A.
    Alcauter, Sarael
    NEUROIMAGE, 2021, 229
  • [27] Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort
    Jinglei Lv
    Maria Di Biase
    Robin F. H. Cash
    Luca Cocchi
    Vanessa L. Cropley
    Paul Klauser
    Ye Tian
    Johanna Bayer
    Lianne Schmaal
    Suheyla Cetin-Karayumak
    Yogesh Rathi
    Ofer Pasternak
    Chad Bousman
    Christos Pantelis
    Fernando Calamante
    Andrew Zalesky
    Molecular Psychiatry, 2021, 26 : 3512 - 3523
  • [28] Connectome-based prediction of brain age in Rolandic epilepsy: a protocol for a multicenter cross-sectional study
    Wang, Fuqin
    Yin, Yu
    Yang, Yang
    Liang, Ting
    Huang, Tingting
    He, Cheng
    Hu, Jie
    Zhang, Jingjing
    Yang, Yanli
    Xing, Qianlu
    Zhang, Tijiang
    Liu, Heng
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (06)
  • [29] Structure-decoupled functional connectome-based brain age prediction provides higher association to cognition
    Chen, Huan
    Wang, Haiyan
    Yu, Mingxia
    Duan, Bin
    NEUROREPORT, 2024, 35 (01) : 42 - 48
  • [30] Individualized Structural Perturbations on Normative Brain Connectome Restrict Deep Brain Stimulation Outcomes in Parkinson's Disease
    Wang, Xuyang
    Fu, Shiyu
    Yoo, Kwangsun
    Wang, Xiaoyue
    Gan, Lin
    Zou, Ting
    Gao, Qing
    Han, Honghao
    Yang, Zhenzhe
    Hu, Xiaofei
    Chen, Huafu
    Liu, Dingyang
    Li, Rong
    MOVEMENT DISORDERS, 2024, 39 (08) : 1352 - 1363