Brain age prediction and deviations from normative trajectories in the neonatal connectome

被引:0
|
作者
Sun, Huili [1 ]
Mehta, Saloni [2 ]
Khaitova, Milana [2 ]
Cheng, Bin [3 ]
Hao, Xuejun [4 ]
Spann, Marisa [4 ,5 ]
Scheinost, Dustin [1 ,2 ,6 ,7 ,8 ]
机构
[1] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[2] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT USA
[3] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY USA
[4] New York State Psychiat Inst & Hosp, New York, NY USA
[5] Columbia Univ, Vagelos Coll Phys & Surg, Dept Psychiat, New York, NY USA
[6] Yale Univ, Dept Stat & Data Sci, New Haven, CT USA
[7] Yale Sch Med, Child Study Ctr, New Haven, CT USA
[8] Yale Univ, Wu Tsai Inst, New Haven, CT USA
基金
欧洲研究理事会;
关键词
ANTENATAL MATERNAL ANXIETY; FUNCTIONAL CONNECTIVITY; PRETERM; NETWORKS; LANGUAGE; BEHAVIOR; INFANT; ORGANIZATION; DISORDERS; CHECKLIST;
D O I
10.1038/s41467-024-54657-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural and functional connectomes undergo rapid changes during the third trimester and the first month of postnatal life. Despite progress, our understanding of the developmental trajectories of the connectome in the perinatal period remains incomplete. Brain age prediction uses machine learning to estimate the brain's maturity relative to normative data. The difference between the individual's predicted and chronological age-or brain age gap (BAG)-represents the deviation from these normative trajectories. Here, we assess brain age prediction and BAGs using structural and functional connectomes for infants in the first month of life. We use resting-state fMRI and DTI data from 611 infants (174 preterm; 437 term) from the Developing Human Connectome Project (dHCP) and connectome-based predictive modeling to predict postmenstrual age (PMA). Structural and functional connectomes accurately predict PMA for term and preterm infants. Predicted ages from each modality are correlated. At the network level, nearly all canonical brain networks-even putatively later developing ones-generate accurate PMA prediction. Additionally, BAGs are associated with perinatal exposures and toddler behavioral outcomes. Overall, our results underscore the importance of normative modeling and deviations from these models during the perinatal period. Here, the authors show that altered brain development of infants after birth, driven by perinatal exposures, influences long-term cognitive outcomes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Interindividual Brain Morphology Deviations From Normative Trajectories in Psychopathy, Psychosis, and Violence
    Rokicki, Jaroslav
    Wolfers, Thomas
    Tesli, Natalia
    Bell, Christina
    Hjell, Gabriela
    Fisher-Vieler, Thomas
    Melle, Ingrid
    Andreassen, Ole
    Rasmussen, Kirsten
    Agartz, Ingrid
    Westlye, Lars T.
    Friestad, Christine
    Haukvik, Unn
    BIOLOGICAL PSYCHIATRY, 2023, 93 (09) : S191 - S192
  • [2] Predicting age and clinical risk from the neonatal connectome
    Taoudi-Benchekroun, Yassine
    Christiaens, Daan
    Grigorescu, Irina
    Gale-Grant, Oliver
    Schuh, Andreas
    Pietsch, Maximilian
    Chew, Andrew
    Harper, Nicholas
    Falconer, Shona
    Poppe, Tanya
    Hughes, Emer
    Hutter, Jana
    Price, Anthony N.
    Tournier, J-Donald
    Cordero-Grande, Lucilio
    Counsell, Serena J.
    Rueckert, Daniel
    Arichi, Tomoki
    Hajnal, Joseph, V
    Edwards, A. David
    Deprez, Maria
    Batalle, Dafnis
    NEUROIMAGE, 2022, 257
  • [3] Development of neonatal connectome dynamics and its prediction for cognitive and language outcomes at age 2
    Xu, Yuehua
    Liao, Xuhong
    Lei, Tianyuan
    Cao, Miao
    Zhao, Jianlong
    Zhang, Jiaying
    Zhao, Tengda
    Li, Qiongling
    Jeon, Tina
    Ouyang, Minhui
    Chalak, Lina
    Rollins, Nancy
    Huang, Hao
    He, Yong
    CEREBRAL CORTEX, 2024, 34 (05)
  • [4] THE PREDICTION OF CHANGE: NORMATIVE NEUROPSYCHOLOGICAL TRAJECTORIES
    Attix, Deborah K.
    Story, Tyler J.
    Chelune, Gordon J.
    Ball, J. D.
    Stutts, Michael L.
    Hart, Robert P.
    Barth, Jeffrey T.
    CLINICAL NEUROPSYCHOLOGIST, 2009, 23 (01) : 21 - 38
  • [5] Identifying Structural Brain Alterations in Adolescent Depression Based on Individual Deviations From Normative Age-Related Patterns of Brain Structure
    Schmaal, Lianne
    Toenders, Yara
    Thompson, Paul
    Veltman, Dick
    Marquand, Andre
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S80 - S80
  • [6] Robust prediction of individual personality from brain functional connectome
    Cai, Huanhuan
    Zhu, Jiajia
    Yu, Yongqiang
    SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2020, 15 (03) : 359 - 369
  • [7] The Neonatal Connectome During Preterm Brain Development
    van den Heuvel, Martijn P.
    Kersbergen, Karina J.
    de Reus, Marcel A.
    Keunen, Kristin
    Kahn, Rene S.
    Groenendaal, Floris
    de Vries, Linda S.
    Benders, Manon J. N. L.
    CEREBRAL CORTEX, 2015, 25 (09) : 3000 - 3013
  • [8] Deviations From Normative Age-Brain Associations in Over 3,000 Individuals With Major Depressive Disorder
    Schmaal, Lianne
    Han, Laura
    Bayer, Johanna
    Marquand, Andre
    Dinga, Richard
    Cole, James
    Hahn, Tim
    Penninx, Brenda
    Veltman, Dick
    Thompson, Paul
    BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S36 - S36
  • [9] Prediction of trust propensity from intrinsic brain morphology and functional connectome
    Feng, Chunliang
    Zhu, Zhiyuan
    Cui, Zaixu
    Ushakov, Vadim
    Dreher, Jean-Claude
    Luo, Wenbo
    Gu, Ruolei
    Wu, Xia
    Krueger, Frank
    HUMAN BRAIN MAPPING, 2021, 42 (01) : 175 - 191
  • [10] A large normative connectome for exploring the tractographic correlates of focal brain interventions
    Elias, Gavin J. B.
    Germann, Juergen
    Joel, Suresh E.
    Li, Ningfei
    Horn, Andreas
    Boutet, Alexandre
    Lozano, Andres M.
    SCIENTIFIC DATA, 2024, 11 (01)