Inertial subgradient-type algorithm for solving equilibrium problems with strong monotonicity over fixed point sets

被引:0
|
作者
Manatchanok Khonchaliew [1 ]
Narin Petrot [2 ]
机构
[1] Lampang Rajabhat University,Department of Mathematics
[2] Naresuan University,Centre of Excellence in Nonlinear Analysis and Optimization
[3] Naresuan University,Department of Mathematics
关键词
Equilibrium problems; Fixed point problems; Strongly monotone bifunction; Nonexpansive mapping; Inertial method; Subgradient-type method; 47H09; 47J25; 65K15; 90C33;
D O I
10.1186/s13660-025-03279-6
中图分类号
学科分类号
摘要
This paper introduces an inertial subgradient-type algorithm for solving equilibrium problems with strong monotonicity, constrained over the fixed point set of a nonexpansive mapping in the framework of a real Hilbert space. The proposed method integrates inertial and subgradient strategies to enhance convergence properties while avoiding the computational challenges of metric projections onto complex sets. A strong convergence theorem is established under appropriate constraint qualifications for the scalar sequences. Numerical experiments in both finite and infinite dimensional settings, including applications to Nash–Cournot oligopolistic market equilibrium models, highlight the efficacy and computational advantages of the algorithm. These results demonstrate the potential for broader applications in optimization and variational analysis.
引用
收藏
相关论文
共 50 条
  • [1] A Subgradient-Type Extrapolation Cyclic Method for Solving an Equilibrium Problem over the Common Fixed-Point Sets
    Promsinchai, Porntip
    Nimana, Nimit
    SYMMETRY-BASEL, 2022, 14 (05):
  • [2] An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems
    Zhang, Lixin
    Fang, Changjie
    Chen, Shenglan
    NUMERICAL ALGORITHMS, 2018, 79 (03) : 941 - 956
  • [3] An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems
    Lixin Zhang
    Changjie Fang
    Shenglan Chen
    Numerical Algorithms, 2018, 79 : 941 - 956
  • [4] A new double inertial subgradient extragradient algorithm for solving split pseudomonotone equilibrium problems and fixed point problems
    A. A. Mebawondu
    A. E. Ofem
    F. Akutsah
    C. Agbonkhese
    F. Kasali
    O. K. Narain
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1321 - 1349
  • [5] A subgradient-type method for the equilibrium problem over the fixed point set and its applications
    Iiduka, Hideaki
    Yamada, Isao
    OPTIMIZATION, 2009, 58 (02) : 251 - 261
  • [6] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Thong, Duong Viet
    Cholamjiak, Prasit
    Rassias, Michael T.
    Cho, Yeol Je
    OPTIMIZATION LETTERS, 2022, 16 (02) : 545 - 573
  • [7] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Duong Viet Thong
    Prasit Cholamjiak
    Michael T. Rassias
    Yeol Je Cho
    Optimization Letters, 2022, 16 : 545 - 573
  • [8] Double inertial subgradient extragradient algorithm for solving equilibrium problems and common fixed point problems with application to image restoration
    Cholamjiak, Prasit
    Xie, Zhongbing
    Li, Min
    Paimsang, Papinwich
    Journal of Computational and Applied Mathematics, 2025, 460
  • [9] Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Tan, Bing
    OPTIMIZATION, 2024, 73 (05) : 1329 - 1354
  • [10] Modified mildly inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and nonexpansive fixed point problems
    Akutsah, Francis
    Mebawondu, Akindele Adebayo
    Ofem, Austine Efut
    George, Reny
    Nabwey, Hossam A.
    Narain, Ojen Kumar
    AIMS MATHEMATICS, 2024, 9 (07): : 17276 - 17290