A machine learning approach for wind turbine power forecasting for maintenance planning

被引:0
|
作者
Hariom Dhungana [1 ]
机构
[1] Western Norway University of Applied Sciences,Department of mechanical engineering and maritime studies
关键词
Machine learning; Deep learning; Energy forecasting; Condition monitoring; Wind turbine;
D O I
10.1186/s42162-024-00459-4
中图分类号
学科分类号
摘要
Integrating power forecasting with wind turbine maintenance planning enables an innovative, data-driven approach that maximizes energy output by predicting periods low wind production and aligning them with maintenance schedules, improving operational efficiency. Recently, many countries have met renewable energy targets, primarily using wind and solar, to promote sustainable growth and reduce emissions. Forecasting wind turbine power production is crucial for maintaining a stable and reliable power grid. As renewable energy integration increases, precise electricity demand forecasting becomes essential at every power system level. This study presents and compares nine machine learning (ML) methods for forecasting, Interpretable ML, Explainable ML, and Blackbox model. The interpretable ML includes Linear Regression (LR), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Random Forest (RF); the explainable ML consists of graphical Neural network (GNN); and the blackbox model includes Multi-layer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). These methods are applied to the EDP datasets using three causal variable types: including temporal information, metrological information, and power curtailment information. Computational results show that the GNN-based forecasting model outperforms other benchmark methods regarding power forecasting accuracy. However, when considering computational resources such as memory and processing time, the XGBoost model provides optimal results, offering faster processing and reduced memory usage. Furthermore, we present forecasting results for various time windows and horizons, ranging from 10 minutes to a day.
引用
收藏
相关论文
共 50 条
  • [31] Wind Power Forecasting with Machine Learning Algorithms in Low-Cost Devices
    Buestan-Andrade, Pablo Andres
    Penacoba-Yague, Mario
    Sierra-Garcia, Jesus Enrique
    Santos, Matilde
    ELECTRONICS, 2024, 13 (08)
  • [32] Short-Term Wind Power Forecasting by Advanced Machine Learning Models
    Li, Yun-Lun
    Zhu, Zheng-An
    Chang, Yun-Kai
    Chiang, Chen-Kuo
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 412 - 415
  • [33] Wind Power Forecasting Using Machine Learning: State of the Art, Trends and Challenges
    Jorgensen, Kathrine Lau
    Shaker, Hamid Reza
    2020 8TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE 2020), 2020, : 44 - 50
  • [34] Deep learning based ensemble approach for probabilistic wind power forecasting
    Wang, Huai-zhi
    Li, Gang-qiang
    Wang, Gui-bin
    Peng, Jian-chun
    Jiang, Hui
    Liu, Yi-tao
    APPLIED ENERGY, 2017, 188 : 56 - 70
  • [35] A Study on the Wind Power Forecasting Model Using Transfer Learning Approach
    Oh, JeongRim
    Park, JongJin
    Ok, ChangSoo
    Ha, ChungHun
    Jun, Hong-Bae
    ELECTRONICS, 2022, 11 (24)
  • [36] Probabilistic Wind Speed Forecasting for Wind Turbine Allocation in the Power Grid
    Chaouch, Mohamed
    ENERGIES, 2023, 16 (22)
  • [37] Wind Turbine Fault Diagnosis and Predictive Maintenance Through Statistical Process Control and Machine Learning
    Hsu, Jyh-Yih
    Wang, Yi-Fu
    Lin, Kuan-Cheng
    Chen, Mu-Yen
    Hsu, Jenneille Hwai-Yuan
    IEEE ACCESS, 2020, 8 : 23427 - 23439
  • [38] Wind power forecasting based on a machine learning model: considering a coastal wind farm in Zhejiang as an example
    Gu, Guangcheng
    Li, Ningbo
    Pan, Yaying
    Jin, Chonghui
    Li, Yabin
    Fang, Rongjie
    Chen, Kaibo
    Wang, Qi
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (11) : 2551 - 2558
  • [39] A Preventive Maintenance Planning Approach for Wind Converters
    Davoodi, Amirali
    Peyghami, Saeed
    Yang, Yongheng
    Dragicevic, Tomislav
    Blaabjerg, Frede
    2020 5TH IEEE WORKSHOP ON THE ELECTRONIC GRID (EGRID), 2020,
  • [40] Research on Short-term Forecasting and Uncertainty of Wind Turbine Power Based on Relevance Vector Machine
    Zhang Jinhua
    Yan Jie
    Wu Wenjing
    Liu Yongqin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 229 - 236