A machine learning approach for wind turbine power forecasting for maintenance planning

被引:0
|
作者
Hariom Dhungana [1 ]
机构
[1] Western Norway University of Applied Sciences,Department of mechanical engineering and maritime studies
关键词
Machine learning; Deep learning; Energy forecasting; Condition monitoring; Wind turbine;
D O I
10.1186/s42162-024-00459-4
中图分类号
学科分类号
摘要
Integrating power forecasting with wind turbine maintenance planning enables an innovative, data-driven approach that maximizes energy output by predicting periods low wind production and aligning them with maintenance schedules, improving operational efficiency. Recently, many countries have met renewable energy targets, primarily using wind and solar, to promote sustainable growth and reduce emissions. Forecasting wind turbine power production is crucial for maintaining a stable and reliable power grid. As renewable energy integration increases, precise electricity demand forecasting becomes essential at every power system level. This study presents and compares nine machine learning (ML) methods for forecasting, Interpretable ML, Explainable ML, and Blackbox model. The interpretable ML includes Linear Regression (LR), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Random Forest (RF); the explainable ML consists of graphical Neural network (GNN); and the blackbox model includes Multi-layer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). These methods are applied to the EDP datasets using three causal variable types: including temporal information, metrological information, and power curtailment information. Computational results show that the GNN-based forecasting model outperforms other benchmark methods regarding power forecasting accuracy. However, when considering computational resources such as memory and processing time, the XGBoost model provides optimal results, offering faster processing and reduced memory usage. Furthermore, we present forecasting results for various time windows and horizons, ranging from 10 minutes to a day.
引用
收藏
相关论文
共 50 条
  • [11] Machine Learning approach for Short Term Wind Speed Forecasting
    Shivani
    Sandhu, K. S.
    Nair, Anil Ramchandran
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [12] Wind Power Forecasting Considering Wind Turbine Condition
    Pei Yan
    Qian Zheng
    Chen Niya
    2015 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), 2015,
  • [13] Integrated Machine Learning and Enhanced Statistical Approach-Based Wind Power Forecasting in Australian Tasmania Wind Farm
    Yao, Fang
    Liu, Wei
    Zhao, Xingyong
    Song, Li
    COMPLEXITY, 2020, 2020 (2020)
  • [14] Machine learning based model linearization of a wind turbine for power regulation
    Esfahani, Peyman Sindareh
    Pieper, Jeffrey Kurt
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2021, 18 (15) : 1565 - 1583
  • [15] Forecasting Appliances Failures: A Machine-Learning Approach to Predictive Maintenance
    Fernandes, Sofia
    Antunes, Mario
    Santiago, Ana Rita
    Barraca, Joao Paulo
    Gomes, Diogo
    Aguiar, Rui L.
    INFORMATION, 2020, 11 (04)
  • [16] Short term wind power forecasting using machine learning techniques
    Chaudhary, Aditya
    Sharma, Akash
    Kumar, Ayush
    Dikshit, Karan
    Kumar, Neeraj
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2020, 23 (01): : 145 - 156
  • [17] Wind Turbine Power Curve Modeling with a Hybrid Machine Learning Technique
    Pei, Shenglei
    Li, Yifen
    APPLIED SCIENCES-BASEL, 2019, 9 (22):
  • [18] Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine
    Wan, Can
    Xu, Zhao
    Pinson, Pierre
    Dong, Zhao Yang
    Wong, Kit Po
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (03) : 1033 - 1044
  • [19] Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning
    Tian, Weihua
    Bao, Yan
    Liu, Wei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [20] Wind power forecasting based on time series and machine learning models
    Park, Sujin
    Lee, Jin-Young
    Kim, Sahm
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (05) : 723 - 734