Reliability of hierarchical cubic networks based on component fault pattern

被引:0
|
作者
Lv, Mengjie [1 ]
Liu, Xuanli [1 ]
Dong, Hui [1 ]
Fan, Weibei [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Comp, Nanjing 210003, Jiangsu, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 05期
关键词
Reliability; Hierarchical cubic networks; Component connectivity; Component diagnosability; CONDITIONAL DIAGNOSABILITY; MULTIPROCESSOR SYSTEMS; CONNECTIVITY;
D O I
10.1007/s11227-025-07174-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Interconnection networks are critical to high-performance computing systems, where reliability is a key metric for evaluating network efficiency. Connectivity and diagnosability, as two fundamental indicators, play a crucial role in characterizing network reliability. As extensions of classical metrics, (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component connectivity and (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component diagnosability provide a more refined assessment of system resilience and fault tolerance. In this paper, we establish the (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component connectivity of the n-dimensional hierarchical cubic network HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document} as c kappa r+1(HCNn)=-12r2+(n+12)r+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\kappa _{r+1}(HCN_n)=-\frac{1}{2}r<^>2+(n+\frac{1}{2})r+1$$\end{document} for n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and 1 <= r <= n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le n-2$$\end{document}, where n represents the dimension of HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}, and r denotes the number of components after node removals. Additionally, we determine the (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r+1)$$\end{document}-component diagnosability of HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document} under the Preparata-Metze-Chien model (PMC model) and the generalized Maeng-Malek model (MM* model) as ctr+1(HCNn)=-12r2+(n-12)r+n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ct_{r+1}(HCN_n)=-\frac{1}{2}r<^>2+(n-\frac{1}{2})r+n+1$$\end{document} for n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and 1 <= r <= n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le n-2$$\end{document}. Extensive simulations demonstrate that component connectivity consistently outperforms classical, conditional, and structural connectivity metrics, while component diagnosability significantly surpasses their corresponding diagnosability measures in HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}. Although our analysis focuses on the specific regular network HCNn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HCN_n$$\end{document}, the findings offer valuable insights and underscore the effectiveness of component-based connectivity and diagnosability for a broader class of cube-like networks.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Fault tolerance of hierarchical cubic networks based on cluster fault pattern
    Lv, Mengjie
    Fan, Weibei
    Dong, Hui
    Wang, Guijuan
    COMPUTER JOURNAL, 2024, 67 (10): : 2890 - 2897
  • [2] Component Fault Diagnosability of Hierarchical Cubic Networks
    Huang, Yanze
    Wen, Kui
    Lin, Limei
    Xu, Li
    Hsieh, Sun-Yuan
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2023, 28 (03)
  • [3] Component conditional fault tolerance of hierarchical folded cubic networks
    Sun, Xueli
    Fan, Jianxi
    Cheng, Baolei
    Liu, Zhao
    Yu, Jia
    THEORETICAL COMPUTER SCIENCE, 2021, 883 : 44 - 58
  • [4] On conditional fault tolerance of hierarchical cubic networks
    Li, Xiang-Jun
    Liu, Min
    Yan, Zheng
    Xu, Jun-Ming
    THEORETICAL COMPUTER SCIENCE, 2019, 761 : 1 - 6
  • [5] Reliability analysis of complete cubic networks based on extra conditional fault
    Lv, Mengjie
    Liu, Xuanli
    Dong, Hui
    Fan, Weibei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (15): : 21952 - 21974
  • [6] On conditional fault tolerance and diagnosability of hierarchical cubic networks
    Zhou, Shuming
    Song, Sulin
    Yang, Xiaoxue
    Chen, Lanxiang
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 421 - 433
  • [7] Fault-tolerant cycle embedding in hierarchical cubic networks
    Fu, JS
    NETWORKS, 2004, 43 (01) : 28 - 38
  • [8] HIERARCHICAL CUBIC NETWORKS
    GHOSE, K
    DESAI, KR
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1995, 6 (04) : 427 - 435
  • [9] Reliability evaluation of DQcube based on g-good neighbor and g-component fault pattern
    Zhang, Hong
    Zhou, Shuming
    Liu, Jiafei
    Zhou, Qianru
    Yu, Zhengqin
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 179 - 190
  • [10] Comments on "Hierarchical cubic networks"
    Yun, SK
    Park, KH
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1998, 9 (04) : 410 - 414