A Note on Kähler–Ricci Flow on Fano Threefolds

被引:0
|
作者
Minghao Miao [1 ]
Gang Tian [2 ]
机构
[1] Nanjing University,Department of Mathematics
[2] BICMR and SMS,undefined
[3] Peking University,undefined
关键词
Kähler–Ricci soliton; K-stability; Fano threefold; Kähler–Ricci flow; Primary 53E30; Secondary 32Q26;
D O I
10.1007/s42543-023-00078-0
中图分类号
学科分类号
摘要
In this note, we show that the solution of Kähler–Ricci flow on every Fano threefold from Family No. 2.23 in the Mori–Mukai’s list develops type II singularity. In fact, we show that no Fano threefold from Family No. 2.23 admits Kähler–Ricci soliton and the Gromov–Hausdorff limit of the Kähler–Ricci flow must be a singular Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-Fano variety. This gives new examples of Fano manifolds of the lowest dimension on which Kähler–Ricci flow develops type II singularity.
引用
收藏
页码:191 / 199
页数:8
相关论文
共 50 条
  • [11] Kähler-Ricci solitons on toric Fano orbifolds
    Yalong Shi
    Xiaohua Zhu
    Mathematische Zeitschrift, 2012, 271 : 1241 - 1251
  • [12] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [13] The twisted conical Kähler-Ricci solitons on Fano manifolds
    Xishen Jin
    Jiawei Liu
    Science China Mathematics, 2024, 67 : 1085 - 1102
  • [14] The twisted conical Kähler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (05) : 1085 - 1102
  • [15] The twisted conical K?hler-Ricci solitons on Fano manifolds
    Xishen Jin
    Jiawei Liu
    Science China(Mathematics), 2024, 67 (05) : 1085 - 1102
  • [16] Some progresses on Kähler–Ricci flow
    Gang Tian
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 251 - 263
  • [17] The Kähler–Ricci flow through singularities
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2017, 207 : 519 - 595
  • [18] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289
  • [19] Stability of Kähler-Ricci Flow
    Xiuxiong Chen
    Haozhao Li
    Journal of Geometric Analysis, 2010, 20 : 306 - 334
  • [20] On a twisted conical Kähler–Ricci flow
    Yashan Zhang
    Annals of Global Analysis and Geometry, 2019, 55 : 69 - 98