On von Neumann’s inequality on the polydiscOn von Neumann’s inequality on the polydiscM. Hartz

被引:0
|
作者
Michael Hartz [1 ]
机构
[1] Fachrichtung Mathematik,
[2] Universität des Saarlandes,undefined
关键词
Primary 47A13; Secondary 47A30; 47A60;
D O I
10.1007/s00208-024-03040-2
中图分类号
学科分类号
摘要
Given a d-tuple T of commuting contractions on Hilbert space and a polynomial p in d-variables, we seek upper bounds for the norm of the operator p(T). Results of von Neumann and Andô show that if d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document} or d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}, the upper bound ‖p(T)‖≤‖p‖∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert p(T)\Vert \le \Vert p\Vert _\infty $$\end{document}, holds, where the supremum norm is taken over the polydisc Dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}^d$$\end{document}. We show that for d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, there exists a universal constant C such that ‖p(T)‖≤C‖p‖∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert p(T)\Vert \le C \Vert p\Vert _\infty $$\end{document} for every homogeneous polynomial p. We also show that for general d and arbitrary polynomials, the norm ‖p(T)‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert p(T)\Vert $$\end{document} is dominated by a certain Besov-type norm of p.
引用
收藏
页码:5235 / 5264
页数:29
相关论文
共 50 条