VON NEUMANN-TYPE INEQUALITY FOR COMPLETELY ORTHOGONALLY DECOMPOSABLE TENSORS

被引:0
|
作者
Wang, Jie [1 ]
机构
[1] China Jiliang Univ, Dept Math, Sch Sci, Hangzhou 310018, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2022年 / 18卷 / 02期
基金
中国国家自然科学基金;
关键词
completely orthogonally decomposable tensor; Von Neumann's trace inequality;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents some generalizations of Von Neumann's trace inequality for matrices to the contents of completely orthogonally decomposable tensors. The angle between two completely orthogonally decomposable (symmetrical) tensors is defined and taken into account in the Von Neumann-type inequality. Moreover, the properties of spectral functions in the case of completely orthogonally decomposable asymmetrical and symmetrical tensors are studied, respectively.
引用
收藏
页码:395 / 414
页数:20
相关论文
共 50 条
  • [1] Refined von Neumann-type trace inequality and its application
    Han, Yazhou
    Yan, Cheng
    Zhao, Xingpeng
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [2] Von Neumann's trace inequality for tensors
    Chretien, Stephane
    Wei, Tianwen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 482 : 149 - 157
  • [3] Singular vectors of orthogonally decomposable tensors
    Robeva, Elina
    Seigal, Anna
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12): : 2457 - 2471
  • [4] REFINEMENT OF VON NEUMANN-TYPE INEQUALITIES ON PRODUCT EATON TRIPLES
    Niezgoda, Marek
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 199 - 213
  • [5] Nonlinear von Neumann-type equations: Darboux invariance and spectra
    Kuna, M
    Czachor, M
    Leble, SB
    PHYSICS LETTERS A, 1999, 255 (1-2) : 42 - 48
  • [6] Nonlinear von Neumann-type equations: Darboux invariance and spectra
    Kuna, Maciej
    Czachor, Marek
    Leble, Sergiej B.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 255 (1-2): : 42 - 48
  • [7] GEOMETRIC-QUANTIZATION OF NEUMANN-TYPE COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS
    MYKYTYUK, IV
    PRYKARPATSKY, AK
    ANDRUSHKIW, RI
    SAMOILENKO, VH
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) : 1532 - 1548
  • [8] A von Neumann type inequality for an annulus
    Tsikalas, Georgios
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [9] Locally Optimal Eigenpairs of Orthogonally Decomposable Tensors: A Generalized Proof
    Wang, Lei
    Geng, Xiurui
    Zhang, Lei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 199 - 220
  • [10] Perturbation bounds for (nearly) orthogonally decomposable tensors with statistical applications
    Auddy, Arnab
    Yuan, Ming
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (02) : 1044 - 1072