The Cuntz semigroup of a ring

被引:0
|
作者
Ramon Antoine [1 ]
Pere Ara [2 ]
Joan Bosa [1 ]
Francesc Perera [2 ]
Eduard Vilalta [3 ]
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Centre de Recerca Matemàtica,Departamento de Matemáticas
[3] Universidad de Zaragoza,Department of Mathematical Sciences
[4] Chalmers University of Technology and University of Gothenburg,undefined
关键词
Associative rings; Projective modules; -algebras; Cuntz semigroups; Primary 16D10; 16B99; 06F05; Secondary 46L05;
D O I
10.1007/s00029-024-01002-9
中图分类号
学科分类号
摘要
For any ring R, we introduce an invariant in the form of a partially ordered abelian semigroup S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document} built from an equivalence relation on the class of countably generated projective modules. We call S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document} the Cuntz semigroup of the ring R. This construction is akin to the manufacture of the Cuntz semigroup of a C*-algebra using countably generated Hilbert modules. To circumvent the lack of a topology in a general ring R, we deepen our understanding of countably projective modules over R, thus uncovering new features in their direct limit decompositions, which in turn yields two equivalent descriptions of S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document}. The Cuntz semigroup of R is part of a new invariant SCu(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SCu}(R)$$\end{document} which includes an ambient semigroup in the category of abstract Cuntz semigroups that provides additional information. We provide computations for both S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document} and SCu(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SCu}(R)$$\end{document} in a number of interesting situations, such as unit-regular rings, semilocal rings, and in the context of nearly simple domains. We also relate our construcion to the Cuntz semigroup of a C*-algebra.
引用
收藏
相关论文
共 50 条
  • [1] The equivariant Cuntz semigroup
    Gardella, Eusebio
    Santiago, Luis
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 189 - 241
  • [2] A REVISED AUGMENTED CUNTZ SEMIGROUP
    Robert, Leonel
    Santiago, Luis
    MATHEMATICA SCANDINAVICA, 2021, 127 (01) : 131 - 160
  • [3] THE CONE OF FUNCTIONALS ON THE CUNTZ SEMIGROUP
    Robert, Leonel
    MATHEMATICA SCANDINAVICA, 2013, 113 (02) : 161 - 186
  • [4] Three Applications of the Cuntz Semigroup
    Brown, Nathanial P.
    Toms, Andrew S.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [5] A bivariant theory for the Cuntz semigroup
    Bosa, Joan
    Tornetta, Gabriele
    Zacharias, Joachim
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (04) : 1061 - 1111
  • [6] The Cuntz Semigroup of Continuous Fields
    Antoine, Ramon
    Bosa, Joan
    Perera, Francesc
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (04) : 1105 - 1131
  • [7] The Cuntz semigroup and domain theory
    Klaus Keimel
    Soft Computing, 2017, 21 : 2485 - 2502
  • [8] The Cuntz semigroup and domain theory
    Keimel, Klaus
    SOFT COMPUTING, 2017, 21 (10) : 2485 - 2502
  • [9] The Cuntz semigroup and comparison of open projections
    Ortega, Eduard
    Rordam, Mikael
    Thiel, Hannes
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (12) : 3474 - 3493
  • [10] Open projections and suprema in the Cuntz semigroup
    Bosa, Joan
    Tornetta, Gabriele
    Zacharias, Joachim
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 164 (01) : 135 - 146