The Cuntz semigroup of a ring

被引:0
|
作者
Ramon Antoine [1 ]
Pere Ara [2 ]
Joan Bosa [1 ]
Francesc Perera [2 ]
Eduard Vilalta [3 ]
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Centre de Recerca Matemàtica,Departamento de Matemáticas
[3] Universidad de Zaragoza,Department of Mathematical Sciences
[4] Chalmers University of Technology and University of Gothenburg,undefined
关键词
Associative rings; Projective modules; -algebras; Cuntz semigroups; Primary 16D10; 16B99; 06F05; Secondary 46L05;
D O I
10.1007/s00029-024-01002-9
中图分类号
学科分类号
摘要
For any ring R, we introduce an invariant in the form of a partially ordered abelian semigroup S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document} built from an equivalence relation on the class of countably generated projective modules. We call S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document} the Cuntz semigroup of the ring R. This construction is akin to the manufacture of the Cuntz semigroup of a C*-algebra using countably generated Hilbert modules. To circumvent the lack of a topology in a general ring R, we deepen our understanding of countably projective modules over R, thus uncovering new features in their direct limit decompositions, which in turn yields two equivalent descriptions of S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document}. The Cuntz semigroup of R is part of a new invariant SCu(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SCu}(R)$$\end{document} which includes an ambient semigroup in the category of abstract Cuntz semigroups that provides additional information. We provide computations for both S(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm S}(R)$$\end{document} and SCu(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SCu}(R)$$\end{document} in a number of interesting situations, such as unit-regular rings, semilocal rings, and in the context of nearly simple domains. We also relate our construcion to the Cuntz semigroup of a C*-algebra.
引用
收藏
相关论文
共 50 条
  • [41] Some remarks on the inverse semigroup associated to the Cuntz-Li algebras
    S. Sundar
    Semigroup Forum, 2013, 86 : 383 - 394
  • [42] EMBEDDING A SEMIGROUP INTO A RING
    SUN, HS
    YEUNG, HC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A290 - A290
  • [43] The circle semigroup of a ring
    Heatherly, H
    Tucci, RP
    ACTA MATHEMATICA HUNGARICA, 2001, 90 (03) : 231 - 242
  • [44] On the multiplicative semigroup of a ring
    Klein, AA
    Bell, HE
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 116 (1) : 249 - 252
  • [45] The adjoint semigroup of a ring
    Du, XK
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) : 4507 - 4525
  • [46] Ring and Semigroup Constructions
    D'Anna, Marco
    MULTIPLICATIVE IDEAL THEORY AND FACTORIZATION THEORY: COMMUTATIVE AND NON-COMMUTATIVE PERSPECTIVES, 2016, 170 : 97 - 115
  • [47] EMBEDDING A SEMIGROUP IN A RING
    SUN, HS
    FIBONACCI QUARTERLY, 1975, 13 (01): : 50 - 50
  • [48] ON THE UNIQUENESS OF THE COEFFICIENT RING IN A SEMIGROUP RING
    SPIEGEL, E
    SEMIGROUP FORUM, 1987, 36 (03) : 315 - 322
  • [49] The Circle Semigroup of a Ring
    H. Heatherly
    R. P. Tucci
    Acta Mathematica Hungarica, 2001, 90 : 231 - 242
  • [50] On the multiplicative semigroup of a ring
    A. A. Klein
    H. E. Bell
    Israel Journal of Mathematics, 2000, 116 : 249 - 252