Open projections and suprema in the Cuntz semigroup

被引:2
|
作者
Bosa, Joan [1 ]
Tornetta, Gabriele [1 ]
Zacharias, Joachim [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, 15 Univ Gardens, Glasgow G12 8QW, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
C-ASTERISK-ALGEBRAS; DIMENSION FUNCTIONS; STAR-ALGEBRAS;
D O I
10.1017/S030500411600089X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a new and concise proof of the existence of suprema in the Cuntz semigroup using the open projection picture of the Cuntz semigroup initiated in [12]. Our argument is based on the observation that the supremum of a countable set of open projections in the bidual of a C*-algebra A is again open and corresponds to the generated hereditary C*-subalgebra of A.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [1] The Cuntz semigroup and comparison of open projections
    Ortega, Eduard
    Rordam, Mikael
    Thiel, Hannes
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (12) : 3474 - 3493
  • [2] The equivariant Cuntz semigroup
    Gardella, Eusebio
    Santiago, Luis
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 189 - 241
  • [3] The Cuntz semigroup of a ring
    Ramon Antoine
    Pere Ara
    Joan Bosa
    Francesc Perera
    Eduard Vilalta
    Selecta Mathematica, 2025, 31 (1)
  • [4] A REVISED AUGMENTED CUNTZ SEMIGROUP
    Robert, Leonel
    Santiago, Luis
    MATHEMATICA SCANDINAVICA, 2021, 127 (01) : 131 - 160
  • [5] THE CONE OF FUNCTIONALS ON THE CUNTZ SEMIGROUP
    Robert, Leonel
    MATHEMATICA SCANDINAVICA, 2013, 113 (02) : 161 - 186
  • [6] Three Applications of the Cuntz Semigroup
    Brown, Nathanial P.
    Toms, Andrew S.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [7] A bivariant theory for the Cuntz semigroup
    Bosa, Joan
    Tornetta, Gabriele
    Zacharias, Joachim
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (04) : 1061 - 1111
  • [8] The Cuntz Semigroup of Continuous Fields
    Antoine, Ramon
    Bosa, Joan
    Perera, Francesc
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (04) : 1105 - 1131
  • [9] The Cuntz semigroup and domain theory
    Klaus Keimel
    Soft Computing, 2017, 21 : 2485 - 2502
  • [10] The Cuntz semigroup and domain theory
    Keimel, Klaus
    SOFT COMPUTING, 2017, 21 (10) : 2485 - 2502