Mössbauer study of iron oxide nanoparticles

被引:0
|
作者
Karra C. [1 ]
Sarafidis C. [1 ]
机构
[1] School of Physics, Aristotle University, Thessaloniki
来源
Applied Research | / 3卷 / 06期
关键词
Mössbauer spectroscopy; nanoparticles; rare-earth substituted cobalt ferrites;
D O I
10.1002/appl.202400008
中图分类号
学科分类号
摘要
Magnetic nanoparticles have recently attracted attention for biochemical and medical applications like drug delivery and hyperthermia for a variety of reasons with most important being their stability, chemical compatibility, and suitable magnetic properties like moderate specific mass magnetization. Cobalt ferrites are a well-studied family of materials and the partial substitution of Fe3+ cations by rare earth (RE) ones may be used to tune the magnetic properties. In the present work pure and substituted Co ferrite nanoparticles with nominal stoichiometry CoFe2−xRxO4 (R = Yb, Gd; x = 0.05, 0.1, 0.3) synthesized by the co-precipitation method are studied with 57Fe Mössbauer spectroscopy to determine the incorporation of RE ions in the spinel lattice. The fitting procedure was based on the standard spinel model using two sextets for the octahedral and the tetrahedral coordinated positions of Fe atoms. All isomer shift values were found within the typical range of high spin ferric ions while quadrupole splitting values strongly suggest that there is a substitution preference; RE ions replace iron ones in octahedral sites. The inversion parameter was found to decrease with RE content (lowest value about 0.534 for CoFe1.90Yb0.10O4) and thermal treatment always results in changing the material toward normal spinel, while pure CoFe2O4 was inverse. Thermal treatment of substituted materials in ambient air at temperature range 1500–1700 K for 12 h increase crystallite size and changes the degree of inversion. © 2024 The Author(s). Applied Research published by Wiley-VCH GmbH.
引用
收藏
相关论文
共 50 条
  • [31] Study of iron compounds in clay using Mössbauer spectroscopy
    Dias Filho J.H.
    Pereira F.S.
    de Moura Gomes G.F.
    Paniago R.
    Aguilar J.L.L.
    Hyperfine Interactions, 2023, 244 (01):
  • [32] Mössbauer study of iron impurities in cubic boron nitride
    Fedotova, J.A. (julia@hep.by), 1600, Elsevier Ltd (352): : 1 - 2
  • [33] Mössbauer study of layered iron hydroxysulfides: Tochilinite and valleriite
    Gubaidulina T.V.
    Chistyakova N.I.
    Rusakov V.S.
    Bull. Russ. Acad. Sci. Phys., 2007, 9 (1269-1272): : 1269 - 1272
  • [34] Mössbauer Study of Iron-Containing Carbon Nanotubes
    J. F. Marco
    J. R. Gancedo
    A. Hernando
    P. Crespo
    C. Prados
    J. M. González
    N. Grobert
    M. Terrones
    D. R. M. Walton
    H. W. Kroto
    Hyperfine Interactions, 2002, 139-140 : 535 - 542
  • [35] Mössbauer study on iron-polygalacturonate coordination compounds
    Judit Fodor
    Ernö Kuzmann
    Zoltán May
    Attila Vértes
    Zoltán Homonnay
    Klára Szentmihályi
    Hyperfine Interactions, 2008, 185 : 145 - 149
  • [36] Mössbauer study of iron gall inks on historical documents
    A. Lerf
    F. E. Wagner
    M. Dreher
    T. Espejo
    J.-L. Pérez-Rodríguez
    Heritage Science, 9
  • [37] Mössbauer study of ancient iron smelting slag in Japan
    A. Nakanishi
    Hyperfine Interactions, 2008, 186 : 135 - 139
  • [38] Mössbauer study of iron minerals transformations by Fuchsiella ferrireducens
    M. A. Gracheva
    N. I. Chistyakova
    A. V. Antonova
    V. S. Rusakov
    T. N. Zhilina
    D. G. Zavarzina
    Hyperfine Interactions, 2017, 238
  • [39] Model compounds of iron gall inks – a Mössbauer study
    A. Lerf
    F. E. Wagner
    Hyperfine Interactions, 2016, 237
  • [40] A 57Fe Mössbauer spectroscopy study of iron nanoparticles obtained in situ in conversion ferrite electrodes
    Jean-Claude Jumas
    Manfred Womes
    Ricardo Alcántara
    Pedro Lavela
    José L. Tirado
    Hyperfine Interactions, 2008, 183 : 1 - 5