Mössbauer study of iron oxide nanoparticles

被引:0
|
作者
Karra C. [1 ]
Sarafidis C. [1 ]
机构
[1] School of Physics, Aristotle University, Thessaloniki
来源
Applied Research | / 3卷 / 06期
关键词
Mössbauer spectroscopy; nanoparticles; rare-earth substituted cobalt ferrites;
D O I
10.1002/appl.202400008
中图分类号
学科分类号
摘要
Magnetic nanoparticles have recently attracted attention for biochemical and medical applications like drug delivery and hyperthermia for a variety of reasons with most important being their stability, chemical compatibility, and suitable magnetic properties like moderate specific mass magnetization. Cobalt ferrites are a well-studied family of materials and the partial substitution of Fe3+ cations by rare earth (RE) ones may be used to tune the magnetic properties. In the present work pure and substituted Co ferrite nanoparticles with nominal stoichiometry CoFe2−xRxO4 (R = Yb, Gd; x = 0.05, 0.1, 0.3) synthesized by the co-precipitation method are studied with 57Fe Mössbauer spectroscopy to determine the incorporation of RE ions in the spinel lattice. The fitting procedure was based on the standard spinel model using two sextets for the octahedral and the tetrahedral coordinated positions of Fe atoms. All isomer shift values were found within the typical range of high spin ferric ions while quadrupole splitting values strongly suggest that there is a substitution preference; RE ions replace iron ones in octahedral sites. The inversion parameter was found to decrease with RE content (lowest value about 0.534 for CoFe1.90Yb0.10O4) and thermal treatment always results in changing the material toward normal spinel, while pure CoFe2O4 was inverse. Thermal treatment of substituted materials in ambient air at temperature range 1500–1700 K for 12 h increase crystallite size and changes the degree of inversion. © 2024 The Author(s). Applied Research published by Wiley-VCH GmbH.
引用
收藏
相关论文
共 50 条
  • [21] Comprehensive Methodology for Evaluating the Drug Loading of Iron Oxide Nanoparticles Using Combined Magnetometry and Mössbauer Spectroscopy
    Iacob, Nicusor
    Palade, Petru
    Comanescu, Cezar
    Crisan, Ovidiu
    Toderascu, Luiza Izabela
    Socol, Gabriel
    Schinteie, Gabriel
    Kuncser, Victor
    MOLECULES, 2025, 30 (03):
  • [22] Mössbauer Study of Thin Iron Film Beryllization
    K. K. Kadyrzhanov
    V. S. Rusakov
    T. E. Turkebaev
    M. F. Vereschak
    E. A. Kerimov
    D. A. Plaksin
    Hyperfine Interactions, 2002, 141-142 : 453 - 457
  • [23] Mössbauer Spectroscopy Study of Iron Nickel Alloys
    Abdel-Fatah D. Lehlooh
    Sami H. Mahmood
    Hyperfine Interactions, 2002, 139-140 : 387 - 392
  • [24] Mössbauer study of gamma‴-iron nitride film
    Yasuhiro Yamada
    Ryo Usui
    Yoshio Kobayashi
    Hyperfine Interactions, 2013, 219 : 13 - 17
  • [25] Mössbauer study of some biological iron complexes
    Sikander Ali
    V. R. Alimuddin
    Pramana, 2005, 65 : 1121 - 1126
  • [26] Mössbauer study of iron uptake in cucumber root
    K. Kovács
    E. Kuzmann
    F. Fodor
    A. Vértes
    A. A. Kamnev
    Hyperfine Interactions, 2005, 165 : 289 - 294
  • [27] Mössbauer study of Japanese ancient iron slag
    A. Nakanishi
    T. Kobayashi
    S. Miono
    Journal of Radioanalytical and Nuclear Chemistry, 1999, 239 : 309 - 311
  • [28] Mössbauer effect phase determination in iron oxide–polyaniline nanocomposites
    J. C. Aphesteguy
    S. E. Jacobo
    C. E. Rodríguez Torres
    M. B. Fernández van Raap
    F. H. Sánchez
    Hyperfine Interactions, 2007, 179 : 81 - 86
  • [29] Monitoring by Mössbauer spectroscopy the thermal reduction of hematite into magnetite: the surface effect and charge disproportionality in iron oxide nanoparticles
    I. S. Lyubutin
    E. A. Alkaev
    Yu. V. Korzhetskiy
    C. R. Lin
    R. K. Chiang
    Hyperfine Interactions, 2009, 189 : 21 - 29
  • [30] Mössbauer spectroscopy analysis of the phase composition of iron-based nanoparticles
    E. S. Vasil’eva
    O. V. Tolochko
    V. G. Semenov
    V. S. Volodin
    D. Kim
    Technical Physics Letters, 2007, 33 : 40 - 43