Explainable deep learning on multi-target time series forecasting: An air pollution use case

被引:0
|
作者
Jimenez-Navarro, Manuel J. [1 ]
Lovric, Mario [2 ,3 ]
Kecorius, Simonas [4 ]
Nyarko, Emmanuel Karlo [5 ]
Martinez-Ballesteros, Maria [1 ]
机构
[1] Univ Seville, Dept Comp Languages & Syst, ES-41012 Seville, Spain
[2] Inst Anthropol Res, Ctr Bioanthropol, Zagreb, Croatia
[3] Lisbon Council, Brussels, Belgium
[4] Inst Epidemiol, German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Neuherberg, Germany
[5] Josip Juraj Strossmayer Univ Osijek, Fac Elect Engn Comp Sci & Informat Technol Osijek, Osijek, Croatia
关键词
Time series forecasting; Air pollution; Feature selection; Deep learning; XAI;
D O I
10.1016/j.rineng.2024.103290
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Urban air pollution represents a significant threat to public health and the environment, with nitrogen oxides, ozone, and particulate matter being among the most harmful pollutants. These contribute to respiratory and cardiovascular diseases, particularly in urban areas with high traffic and elevated temperatures. Machine learning, especially deep learning, shows promise in enhancing the prediction accuracy of prediction of pollutant's concentrations. However, the "black box" nature of these models often limits their interpretability, which is crucial for informed decision-making. Our study introduces a Temporal Selection Layer technique within deep learning models for time series forecasting to tackle this issue. This technique not only improves prediction accuracy by embedding feature selection directly into the neural network, but also enhances interpretability and reduces computational costs. In particular, we applied this method to hourly concentration data of pollutants, including particulate matter, ozone, and nitrogen oxides, from five urban monitoring sites in Graz, Austria. These concentrations were used as target variables to predict, while identifying the most relevant features and periods that affect prediction accuracy. Comparative analysis with other embedded feature selection methods showed that the Temporal Selection Layer significantly enhances both model effectiveness and transparency. Additionally, we applied explainable techniques to evaluate the impact of weather and time-related factors on air pollution, which also helped assess feature importance. The results show that our approach improves both prediction accuracy and model interpretability, leading finally to more effective pollution management strategies.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Research on Multi-target Detection Method Based on Deep Learning
    Dai, Kang
    Sui, Xiubao
    Wang, Liping
    Wu, Qiuhao
    Chen, Qian
    Gu, Guohua
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [22] Deep learning algorithm based on MobileNet for multi-target tracking
    Xue J.-T.
    Ma R.-H.
    Hu C.-F.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (08): : 1991 - 1996
  • [23] Explainable online ensemble of deep neural network pruning for time series forecasting
    Saadallah, Amal
    Jakobs, Matthias
    Morik, Katharina
    MACHINE LEARNING, 2022, 111 (09) : 3459 - 3487
  • [24] Time Series Dataset Survey for Forecasting with Deep Learning
    Hahn, Yannik
    Langer, Tristan
    Meyes, Richard
    Meisen, Tobias
    FORECASTING, 2023, 5 (01): : 315 - 335
  • [25] A novel time series forecasting model with deep learning
    Shen, Zhipeng
    Zhang, Yuanming
    Lu, Jiawei
    Xu, Jun
    Xiao, Gang
    NEUROCOMPUTING, 2020, 396 : 302 - 313
  • [26] Deep learning-based time series forecasting
    Song, Xiaobao
    Deng, Liwei
    Wang, Hao
    Zhang, Yaoan
    He, Yuxin
    Cao, Wenming
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [27] Time-series forecasting with deep learning: a survey
    Lim, Bryan
    Zohren, Stefan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [28] Ensemble Deep Learning for Regression and Time Series Forecasting
    Qiu, Xueheng
    Zhang, Le
    Ren, Ye
    Suganthan, P. N.
    Amaratunga, Gehan
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ENSEMBLE LEARNING (CIEL), 2014, : 21 - 26
  • [29] Multivariate Financial Time Series Forecasting with Deep Learning
    Martelo, Sebastian
    Leon, Diego
    Hernandez, German
    APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2022, 2022, 1685 : 160 - 169
  • [30] Deep Learning Models for Time Series Forecasting: A Review
    Li, Wenxiang
    Law, K. L. Eddie
    IEEE ACCESS, 2024, 12 : 92306 - 92327