Asymptotic-preserving IMEX schemes for the Euler equations of non-ideal gases

被引:0
|
作者
Orlando, Giuseppe [1 ]
Bonaventura, Luca [2 ]
机构
[1] CMAP, CNRS, École polytechnique, Institute Polytechnique de Paris, Route de Saclay, Palaiseau,91120, France
[2] Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano,20133, Italy
关键词
Compressibility of gases - Euler equations - Galerkin methods - Mach number;
D O I
10.1016/j.jcp.2025.113889
中图分类号
学科分类号
摘要
We analyze schemes based on a general Implicit-Explicit (IMEX) time discretization for the compressible Euler equations of gas dynamics, showing that they are asymptotic-preserving (AP) in the low Mach number limit. The analysis is carried out for a general equation of state (EOS). We consider both a single asymptotic length scale and two length scales. We then show that, when coupling these time discretizations with a Discontinuous Galerkin (DG) space discretization with appropriate fluxes, a numerical method effective for a wide range of Mach numbers is obtained. A number of benchmarks for ideal gases and their non-trivial extension to non-ideal EOS validate the performed analysis. © 2025 The Authors
引用
收藏
相关论文
共 50 条
  • [41] ASYMPTOTIC-PRESERVING AND POSITIVITY-PRESERVING IMPLICIT-EXPLICIT SCHEMES FOR THE STIFF BGK EQUATION
    Hu, Jingwei
    Shu, Ruiwen
    Zhang, Xiangxiong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 942 - 973
  • [42] High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling
    Jang, Juhi
    Li, Fengyan
    Qiu, Jing-Mei
    Xiong, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 199 - 224
  • [43] Characteristic decomposition of compressible Euler equations for a non-ideal gas in two-dimensions
    Zafar, M.
    Sharma, V. D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (09)
  • [44] Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation
    Laurent Gosse
    Giuseppe Toscani
    Numerische Mathematik, 2004, 98 : 223 - 250
  • [45] Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation
    Gosse, L
    Toscani, G
    NUMERISCHE MATHEMATIK, 2004, 98 (02) : 223 - 250
  • [46] An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations
    Gosse, L
    Toscani, G
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) : 337 - 342
  • [47] ASYMPTOTIC-PRESERVING MONTE CARLO METHODS FOR TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT
    Dimarco, G.
    Pareschi, L.
    Samaey, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01): : A504 - A528
  • [48] An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
    Chertock, Alina
    Degond, Pierre
    Neusser, Jochen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 387 - 403
  • [49] ASYMPTOTIC-PRESERVING SCHEME FOR THE RESOLUTION OF EVOLUTION EQUATIONS WITH STIFF TRANSPORT TERMS
    Fedele, Baptiste
    Negulescu, Claudia
    Possanner, Stefan
    MULTISCALE MODELING & SIMULATION, 2019, 17 (01): : 307 - 343
  • [50] Concentration in Lotka-Volterra parabolic equations: an asymptotic-preserving scheme
    Calvez, Vincent
    Hivert, Helene
    Yoldas, Havva
    NUMERISCHE MATHEMATIK, 2023, 154 (1-2) : 103 - 153