Asymptotic-preserving IMEX schemes for the Euler equations of non-ideal gases

被引:0
|
作者
Orlando, Giuseppe [1 ]
Bonaventura, Luca [2 ]
机构
[1] CMAP, CNRS, École polytechnique, Institute Polytechnique de Paris, Route de Saclay, Palaiseau,91120, France
[2] Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano,20133, Italy
关键词
Compressibility of gases - Euler equations - Galerkin methods - Mach number;
D O I
10.1016/j.jcp.2025.113889
中图分类号
学科分类号
摘要
We analyze schemes based on a general Implicit-Explicit (IMEX) time discretization for the compressible Euler equations of gas dynamics, showing that they are asymptotic-preserving (AP) in the low Mach number limit. The analysis is carried out for a general equation of state (EOS). We consider both a single asymptotic length scale and two length scales. We then show that, when coupling these time discretizations with a Discontinuous Galerkin (DG) space discretization with appropriate fluxes, a numerical method effective for a wide range of Mach numbers is obtained. A number of benchmarks for ideal gases and their non-trivial extension to non-ideal EOS validate the performed analysis. © 2025 The Authors
引用
收藏
相关论文
共 50 条
  • [21] Working with non-ideal gases
    Peress, J
    CHEMICAL ENGINEERING PROGRESS, 2003, 99 (03) : 39 - 41
  • [22] ANALYSIS OF ASYMPTOTIC PRESERVING DG-IMEX SCHEMES FOR LINEAR KINETIC TRANSPORT EQUATIONS IN A DIFFUSIVE SCALING
    Jang, Juhi
    Li, Fengyan
    Qiu, Jing-Mei
    Xiong, Tao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 2048 - 2072
  • [23] Moment preserving schemes for Euler equations
    Dai, William W.
    Woodward, Paul R.
    COMPUTERS & FLUIDS, 2011, 46 (01) : 186 - 196
  • [24] Shock polars for ideal and non-ideal gases
    Elling, Volker W.
    JOURNAL OF FLUID MECHANICS, 2021, 916
  • [25] Low Mach asymptotic-preserving scheme for the Euler-Korteweg model
    Giesselmann, Jan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 802 - 833
  • [26] Asymptotic-preserving Boltzmann model equations for binary gas mixture
    Liu, Sha
    Liang, Yihua
    PHYSICAL REVIEW E, 2016, 93 (02):
  • [27] High-order asymptotic-preserving schemes for linear systems: Application to the Goldstein-Taylor equations
    Chalons, Christophe
    Turpault, Rodolphe
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1538 - 1561
  • [28] NON-IDEAL BEHAVIOR OF GASES AND THEIR MIXTURES
    SATTER, A
    CAMPBELL, JM
    TRANSACTIONS OF THE SOCIETY OF PETROLEUM ENGINEERS OF AIME, 1963, 228 (04): : 333 - 347
  • [29] Concentration in Lotka–Volterra parabolic equations: an asymptotic-preserving scheme
    Vincent Calvez
    Hélène Hivert
    Havva Yoldaş
    Numerische Mathematik, 2023, 154 : 103 - 153
  • [30] A POSITIVE ASYMPTOTIC-PRESERVING SCHEME FOR LINEAR KINETIC TRANSPORT EQUATIONS
    Laiu, M. Paul
    Frank, Martin
    Hauck, Cory D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1500 - A1526