Asymptotic-preserving IMEX schemes for the Euler equations of non-ideal gases

被引:0
|
作者
Orlando, Giuseppe [1 ]
Bonaventura, Luca [2 ]
机构
[1] CMAP, CNRS, École polytechnique, Institute Polytechnique de Paris, Route de Saclay, Palaiseau,91120, France
[2] Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano,20133, Italy
关键词
Compressibility of gases - Euler equations - Galerkin methods - Mach number;
D O I
10.1016/j.jcp.2025.113889
中图分类号
学科分类号
摘要
We analyze schemes based on a general Implicit-Explicit (IMEX) time discretization for the compressible Euler equations of gas dynamics, showing that they are asymptotic-preserving (AP) in the low Mach number limit. The analysis is carried out for a general equation of state (EOS). We consider both a single asymptotic length scale and two length scales. We then show that, when coupling these time discretizations with a Discontinuous Galerkin (DG) space discretization with appropriate fluxes, a numerical method effective for a wide range of Mach numbers is obtained. A number of benchmarks for ideal gases and their non-trivial extension to non-ideal EOS validate the performed analysis. © 2025 The Authors
引用
收藏
相关论文
共 50 条
  • [1] Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation
    Bispen, Georgij
    Lukacova-Medvid'ova, Maria
    Yelash, Leonid
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 222 - 248
  • [2] Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations
    Arun, K. R.
    Samantaray, S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (02)
  • [3] Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations
    K. R. Arun
    S. Samantaray
    Journal of Scientific Computing, 2020, 82
  • [4] An Asymptotic-Preserving IMEX Method for Nonlinear Radiative Transfer Equation
    Jinxue Fu
    Weiming Li
    Peng Song
    Yanli Wang
    Journal of Scientific Computing, 2022, 92
  • [5] Asymptotic-preserving (AP) schemes for multiscale kinetic equations: A unified approach
    Jin, S
    Pareschi, L
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 573 - 582
  • [6] ASYMPTOTIC-PRESERVING PROJECTIVE INTEGRATION SCHEMES FOR KINETIC EQUATIONS IN THE DIFFUSION LIMIT
    Lafitte, Pauline
    Samaey, Giovanni
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A579 - A602
  • [7] An Asymptotic-Preserving IMEX Method for Nonlinear Radiative Transfer Equation
    Fu, Jinxue
    Li, Weiming
    Song, Peng
    Wang, Yanli
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [8] An efficient IMEX-DG solver for the compressible Navier-Stokes equations for non-ideal gases
    Orlando, Giuseppe
    Barbante, Paolo Francesco
    Bonaventura, Luca
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [9] Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations
    Jin, Shi
    SIAM Journal on Scientific Computing, 21 (02): : 441 - 454
  • [10] Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations
    Jin, S
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 441 - 454