Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin-Voigt Damping

被引:0
|
作者
Ammari, Kais [1 ]
Cavalcanti, Marcelo M. [2 ]
Mansouri, Sabeur [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, LR 22ES03,LR Anal & Control PDEs, Monastir, Tunisia
[2] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, Parana, Brazil
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2024年 / 90卷 / 02期
关键词
Uniform stabilization; Semilinear wave equation; Nonlinear Kelvin-Voigt damping; Viscoelastic feedback; EXPONENTIAL DECAY; EXACT CONTROLLABILITY; ASYMPTOTIC STABILITY; ENERGY;
D O I
10.1007/s00245-024-10186-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the decay estimate of solutions to the semilinear wave equation subject to two localized dampings in a bounded domain. The first one is of the nonlinear Kelvin-Voigt type which is distributed around a neighborhood of the boundary and the second is a frictional damping depending in the first one. We show uniform decay rate results of the corresponding energy for all initial data taken in bounded sets of finite energy phase-space. The proof is based on obtaining an observability inequality which combines unique continuation properties and the tools of the Microlocal Analysis Theory
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin-Voigt damping
    Hong, Gimyong
    Hong, Hakho
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2239 - 2264
  • [23] Exponential stabilization of semi-linear wave equation
    El Alami, Abdessamad
    Zine, Rabie
    Zine, Rabie (rabie.zine@gmail.com), 1600, Forum-Editrice Universitaria Udinese SRL (44): : 995 - 1002
  • [24] Exponential stabilization of semi-linear wave equation
    El Alami, Abdessamad
    Zine, Rabie
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 995 - 1002
  • [25] Stability of a Nonlinear Axially Moving String With the Kelvin-Voigt Damping
    Shahruz, S. M.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2009, 131 (01): : 0145011 - 0145014
  • [26] Logarithmic stabilization of the Euler Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping
    Hassine, Fathi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1765 - 1782
  • [27] ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY
    Demchenko, Hanna
    Anikushyn, Andrii
    Pokojovy, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4382 - 4412
  • [28] Stability of the wave equations on a tree with local Kelvin-Voigt damping
    Ammari, Kais
    Liu, Zhuangyi
    Shel, Farhat
    SEMIGROUP FORUM, 2020, 100 (02) : 364 - 382
  • [29] Suspension bridge with Kelvin-Voigt damping
    Correia, Leandro
    Raposo, Carlos
    Ribeiro, Joilson
    Gutemberg, Luiz
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 11 - 19
  • [30] Stabilization of the wave equations with localized Kelvin-Voigt type damping under optimal geometric conditions
    Nasser, Rayan
    Noun, Nahla
    Wehbe, Ali
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (03) : 272 - 277