CentralFormer: Centralized Spectral-Spatial Transformer for Hyperspectral Image Classification With Adaptive Relevance Estimation and Circular Pooling

被引:0
|
作者
Li, Ningyang [1 ]
Wang, Zhaohui [1 ]
Cheikh, Faouzi Alaya [2 ]
Wang, Lei [3 ,4 ]
机构
[1] Hainan Univ, Fac Comp Sci & Technol, Haikou 570228, Peoples R China
[2] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect, Dept Comp Sci, N-2815 Gjovik, Norway
[3] Hainan Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Wenchang 571300, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
芬兰科学院;
关键词
Feature extraction; Transformers; Computer architecture; Hyperspectral imaging; Correlation; Computational modeling; Computational complexity; Accuracy; Kernel; Image classification; Attention mechanism; center pixel; circular pooling (CP); hyperspectral image (HSI) classification; relevant area; transformer; NETWORK;
D O I
10.1109/TGRS.2024.3509455
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Classification of hyperspectral image (HSI) is a hotspot in the field of remote sensing. Recent deep learning (DL)-based approaches, especially for the transformer architectures, have been investigated to extract the deep spectral-spatial features. However, the ability of these approaches to efficiently represent the crucial attention patterns and distinguishing features suffers from the neglect of the relevant areas, including the center pixel and high computational complexity; thereby, their classification performances still need to be improved. This article proposes a centralized spectral-spatial transformer (CentralFormer), which contains the central encoder, the adaptive relevance estimation (ARE) module, and the cross-encoder relevance fusion (CERF) module, for HSI classification. To recognize the relevant areas, the ARE modules access both spectral and spatial associations between the center pixel and its neighborhoods flexibly. By focusing on these areas and emphasizing them during attention inference, the central encoders can extract the key attention modes and discriminating features effectively. Moreover, the CERF modules are deployed to prevent the reliability of the relevance map from being harmed by the feature deviation between encoders. To handle the high computational occupancy, a novel circular pooling (CP) strategy reduces the circles and bands of features. Unlike regular pooling methods, it can well improve the relevant characteristics for subsequent encoders. By integrating these techniques, the CentralFormer model can represent the discriminating spectral-spatial features efficiently for HSI classification. Experimental results on four classic HSI datasets reveal that the proposed CentralFormer model outperforms the state-of-the-arts in terms of both classification accuracy and computational efficiency. The source code is available at https://github.com/ningyang-li/CentralFormer.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Adaptive Spectral-Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification
    Wang, Di
    Du, Bo
    Zhang, Liangpei
    Xu, Yonghao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2461 - 2477
  • [32] Spectral-Spatial Hyperspectral Image Classification via Adaptive Total Variation Filtering
    Tu, Bing
    Wang, Jinping
    Zhang, Xiaofei
    Huang, Siyuan
    Zhang, Guoyun
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 45 - 56
  • [33] 3D-Convolution Guided Spectral-Spatial Transformer for Hyperspectral Image Classification
    Varahagiri, Shyam
    Sinha, Aryaman
    Dubey, Shiv Ram
    Singh, Satish Kumar
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 8 - 14
  • [34] Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A Factorized Architecture Search Framework
    Zhong, Zilong
    Li, Ying
    Ma, Lingfei
    Li, Jonathan
    Zheng, Wei-Shi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] MSTSENet: Multiscale Spectral-Spatial Transformer with Squeeze and Excitation network for hyperspectral image classification
    Ahmad, Irfan
    Farooque, Ghulam
    Liu, Qichao
    Hadi, Fazal
    Xiao, Liang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [36] S2Former: Parallel Spectral-Spatial Transformer for Hyperspectral Image Classification
    Yuan, Dong
    Yu, Dabing
    Qian, Yixi
    Xu, Yongbing
    Liu, Yan
    ELECTRONICS, 2023, 12 (18)
  • [37] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTI-LEVEL SPECTRAL-SPATIAL TRANSFORMER NETWORK
    Yang, Hao
    Yu, Haoyang
    Hong, Danfeng
    Xu, Zhen
    Wang, Yulei
    Song, Meiping
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [38] Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7738 - 7749
  • [39] Hyperspectral Image Classification via Spectral Pooling and Hybrid Transformer
    Ma, Chen
    Jiang, Junjun
    Li, Huayi
    Mei, Xiaoguang
    Bai, Chengchao
    REMOTE SENSING, 2022, 14 (19)
  • [40] Selective Spectral-Spatial Aggregation Transformer for Hyperspectral and LiDAR Classification
    Ni, Kang
    Li, Zirun
    Yuan, Chunyang
    Zheng, Zhizhong
    Wang, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22