Spectral-Spatial Hyperspectral Image Classification via Adaptive Total Variation Filtering

被引:0
|
作者
Tu, Bing [1 ]
Wang, Jinping [1 ]
Zhang, Xiaofei [1 ]
Huang, Siyuan [1 ]
Zhang, Guoyun [1 ]
机构
[1] Hunan Inst Sci & Technol, Sch Informat Sci & Technol, Yueyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; PCA; Adaptive total variation; Ensemble empirical mode decomposition; SVM; EMPIRICAL MODE DECOMPOSITION;
D O I
10.1007/978-3-030-00767-6_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is unavoidable that existing noise interference in hyperspectral image (HSI). In order to reduce the noise in HSI and obtain a higher classification result, a spectral-spatial HSI classification via adaptive total variation filtering (ATVF) is proposed in this paper, which consists of the following steps: first, the principal component analysis (PCA) method is used for dimension reduction of HSI. Then, the adaptive total variation filtering is performed on the principal components so as to reduce the sensitiveness of noise and obtain a coarse contour feature. Next, the ensemble empirical mode decomposition is used to decompose each spectrum band into serial components, the characteristics of HSI can be further integrated in a transform domain. Finally, a pixel-level classifier (such as SVM) is used for classification of the processed image. The paper analyzes the effect of different parameters of ATVF method on the classification performance in detail, tests the proposed algorithm on the real hyperspectral data sets, and finally verifies the superiority of the proposed algorithm based on a contrastive analysis of different algorithms.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [1] MULTISCALE SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION WITH ADAPTIVE FILTERING
    Wu, Sifan
    Zhang, Junping
    Shi, Chunyu
    Li, Weike
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2591 - 2594
  • [2] Hyperspectral Image Denoising Employing a Spectral-Spatial Adaptive Total Variation Model
    Yuan, Qiangqiang
    Zhang, Liangpei
    Shen, Huanfeng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10): : 3660 - 3677
  • [3] Bilateral texture filtering for spectral-spatial hyperspectral image classification
    Zhang, Ying
    He, Jing
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, 2019 (23): : 9173 - 9177
  • [4] Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7738 - 7749
  • [5] Hyperspectral Image Deconvolution with a Spectral-Spatial Total Variation Regularization
    Fang, Houzhang
    Luo, Chunan
    Zhou, Gang
    Wang, Xiaoping
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2017, 43 (04) : 384 - 395
  • [6] Adaptive total variation-based spectral-spatial feature extraction of hyperspectral image
    Zhang, Guoyun
    Wang, Jinping
    Zhang, Xiaofei
    Fei, Hongyan
    Tu, Bing
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 150 - 159
  • [7] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING
    Yan, Qingyu
    Zhang, Junping
    Feng, Jia
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 513 - 516
  • [8] Spectral-Spatial Hyperspectral Image Classification With Edge-Preserving Filtering
    Kang, Xudong
    Li, Shutao
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2666 - 2677
  • [9] SPECTRAL-SPATIAL CLASSIFICATION FOR HYPERSPECTRAL IMAGE BY BILATERAL FILTERING AND MORPHOLOGICAL FEATURES
    Liao, Wenzhi
    Ochoa Donoso, Daniel Erick
    Van Coillie, Frieke
    Li, Jie
    Qi, Chun
    Gautama, Sidharta
    Philips, Wilfried
    [J]. 2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [10] SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION VIA BOUNDARY-ADAPTIVE DEEP LEARNING
    Mughees, Atif
    Tao, Linmi
    [J]. 2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 448 - 453