Spectral upper bounds for the Grundy number of a graph

被引:0
|
作者
Assis, Thiago [1 ]
Coutinho, Gabriel [1 ]
Juliano, Emanuel [1 ]
机构
[1] Dept. of Computer Science, Universidade Federal de Minas Gerais, Brazil
来源
关键词
Computational complexity - Graph theory - Polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Upper bounds on the k-forcing number of a graph
    Amos, David
    Caro, Yair
    Davila, Randy
    Pepper, Ryan
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 1 - 10
  • [22] New Probabilistic Upper Bounds on the Domination Number of a Graph
    Rad, Nader Jafari
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [23] Sharp upper bounds on the distance spectral radius of a graph
    Chen, Yingying
    Lin, Huiqiu
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2659 - 2666
  • [24] Two upper bounds on the Aα-spectral radius of a connected graph
    Pirzada, Shariefuddin
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (01) : 53 - 57
  • [25] Spectral lower bounds for the quantum chromatic number of a graph
    Elphick, Clive
    Wocjan, Pawel
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 168 : 338 - 347
  • [26] Spectral bounds for the k-independence number of a graph
    Abiad, Aida
    Cioaba, Sebastian M.
    Tait, Michael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 160 - 170
  • [27] Improved Upper Bounds for the Laplacian Spectral Radius of a Graph
    Wang, Tianfei
    Yang, Jin
    Li, Bin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [28] Bounds for the Grundy chromatic number of graphs in terms of domination number
    Khaleghi, Abbas
    Zaker, Manouchehr
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (02) : 193 - 206
  • [29] Bounds for the Grundy chromatic number of graphs in terms of domination number
    Khaleghi, Abbas
    Zaker, Manouchehr
    arXiv, 2022,
  • [30] On the L-Grundy Domination Number of a Graph
    Bresar, Bostjan
    Gologranc, Tanja
    Henning, Michael A.
    Kos, Tim
    FILOMAT, 2020, 34 (10) : 3205 - 3215