Self-Assembly of Colloidal Dumbbell Isomers and Plasmonic Properties for Optical Metamaterials

被引:1
|
作者
Vu-Minh, Tu [1 ]
Tran-Manh, Cuong [1 ]
Pham-Van, Hai [1 ,2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Phys, Hanoi 100000, Vietnam
[2] Hanoi Natl Univ Educ, Inst Nat Sci, Hanoi 100000, Vietnam
关键词
DISSIPATIVE PARTICLE DYNAMICS; CLUSTERS; NANOPARTICLES; PACKING;
D O I
10.1021/acs.langmuir.4c03486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we explore the self-assembly of various colloidal symmetric dumbbell (DB) isomers, including dipole Janus, cis-Janus, trans-Janus, apolar-inward and polar-inward perpendicular Janus, and alternating perpendicular Janus DBs. Using dissipative particle dynamics (DPD) simulations under conditions mimicking experimental setups, we investigate cluster formation driven by emulsion droplet evaporation. Our findings reveal a diverse set of cluster structures, which are in good agreement with experimental and simulation results reported in the literature while also predicting the formation of novel cluster configurations. These structures, characterized by well-defined and predictable patterns, are potentially applicable to creating colloidal molecules and crystals. Furthermore, we examine the dynamics of cluster formation to gain insight into the mechanisms guiding the self-assembly of these diverse colloidal DBs. The study highlights the impact of particle isomerism on the resulting assembly structures. We further select a set of typical nanoclusters obtained, including a tetrahedral cluster, which is the simplest, to study its plasmonic properties. Our findings indicate that increasing the nanoparticle (NP) radius or decreasing the gap between NPs leads to a red shift in the plasmonic resonance wavelength and enhances the resonance strength. We identify critical parameter regions where the electric-dipole and magnetic-dipole resonances can be engineered to achieve negative dielectric permittivity and magnetic permeability, which are essential for developing negative-index metamaterials.
引用
收藏
页码:26041 / 26054
页数:14
相关论文
共 50 条
  • [41] Guiding the self-assembly of colloidal diamond
    Marin-Aguilar, Susana
    Camerin, Fabrizio
    Dijkstra, Marjolein
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (15):
  • [42] Role of Entropy in Colloidal Self-Assembly
    Rocha, Brunno C.
    Paul, Sanjib
    Vashisth, Harish
    ENTROPY, 2020, 22 (08)
  • [43] Entropic networks in colloidal self-assembly
    Tlusty, T
    Safran, SA
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1782): : 879 - 881
  • [44] Synthesis and self-assembly of colloidal nanoparticles
    Weller, H
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803): : 229 - 239
  • [45] Relevance of packing to colloidal self-assembly
    Cersonsky, Rose K.
    van Anders, Greg
    Dodd, Paul M.
    Glotzer, Sharon C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (07) : 1439 - 1444
  • [46] Self-Assembly of Colloidal Nanorods Arrays
    Qiao, Fen
    Wang, Qian
    He, Zixia
    Liu, Qing
    Liu, Aimin
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2015, 14 (1-2)
  • [47] Nanolithographic self-assembly of colloidal nanoparticles
    Moshnikov, V. A.
    Maksimov, A. I.
    Aleksandrova, O. A.
    Pronin, I. A.
    Karmanov, A. A.
    Terukov, E. I.
    Yakushova, N. D.
    Averin, I. A.
    Bobkov, A. A.
    Permyakov, N. V.
    TECHNICAL PHYSICS LETTERS, 2016, 42 (09) : 967 - 969
  • [48] Self-assembly of reconfigurable colloidal molecules
    Ortiz, Daniel
    Kohlstedt, Kevin L.
    Trung Dac Nguyen
    Glotzer, Sharon C.
    SOFT MATTER, 2014, 10 (20) : 3541 - 3552
  • [49] COLLOIDAL SELF-ASSEMBLY Designed to yield
    Frenkel, Daan
    Wales, David J.
    NATURE MATERIALS, 2011, 10 (06) : 410 - 411
  • [50] An Active Approach to Colloidal Self-Assembly
    Mallory, Stewart A.
    Valeriani, Chantal
    Cacciuto, Angelo
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 69, 2018, 69 : 59 - 79