Self-Assembly of Colloidal Dumbbell Isomers and Plasmonic Properties for Optical Metamaterials

被引:1
|
作者
Vu-Minh, Tu [1 ]
Tran-Manh, Cuong [1 ]
Pham-Van, Hai [1 ,2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Phys, Hanoi 100000, Vietnam
[2] Hanoi Natl Univ Educ, Inst Nat Sci, Hanoi 100000, Vietnam
关键词
DISSIPATIVE PARTICLE DYNAMICS; CLUSTERS; NANOPARTICLES; PACKING;
D O I
10.1021/acs.langmuir.4c03486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we explore the self-assembly of various colloidal symmetric dumbbell (DB) isomers, including dipole Janus, cis-Janus, trans-Janus, apolar-inward and polar-inward perpendicular Janus, and alternating perpendicular Janus DBs. Using dissipative particle dynamics (DPD) simulations under conditions mimicking experimental setups, we investigate cluster formation driven by emulsion droplet evaporation. Our findings reveal a diverse set of cluster structures, which are in good agreement with experimental and simulation results reported in the literature while also predicting the formation of novel cluster configurations. These structures, characterized by well-defined and predictable patterns, are potentially applicable to creating colloidal molecules and crystals. Furthermore, we examine the dynamics of cluster formation to gain insight into the mechanisms guiding the self-assembly of these diverse colloidal DBs. The study highlights the impact of particle isomerism on the resulting assembly structures. We further select a set of typical nanoclusters obtained, including a tetrahedral cluster, which is the simplest, to study its plasmonic properties. Our findings indicate that increasing the nanoparticle (NP) radius or decreasing the gap between NPs leads to a red shift in the plasmonic resonance wavelength and enhances the resonance strength. We identify critical parameter regions where the electric-dipole and magnetic-dipole resonances can be engineered to achieve negative dielectric permittivity and magnetic permeability, which are essential for developing negative-index metamaterials.
引用
收藏
页码:26041 / 26054
页数:14
相关论文
共 50 条
  • [31] Columnar self-assembly of colloidal nanodisks
    Saunders, Aaron E.
    Ghezelbash, Ali
    Smilgies, Detlef-M.
    Sigman, Michael B., Jr.
    Korgel, Brian A.
    NANO LETTERS, 2006, 6 (12) : 2959 - 2963
  • [32] An active approach to colloidal self-assembly
    Mallory, S.A.
    Valeriani, Chantal
    Cacciuto, A.
    arXiv, 2021,
  • [33] Self-assembly of patchy colloidal dumbbells
    Avvisati, Guido
    Vissers, Teun
    Dijkstra, Marjolein
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (08):
  • [34] COLLOIDAL SELF-ASSEMBLY Interlocked octapods
    Rupich, Sara M.
    Talapin, Dmitri V.
    NATURE MATERIALS, 2011, 10 (11) : 815 - 816
  • [35] A Review on Colloidal Self-Assembly and their Applications
    Xu, Zongwei
    Wang, Liyang
    Fang, Fengzhou
    Fu, Yongqi
    Yin, Zhen
    CURRENT NANOSCIENCE, 2016, 12 (06) : 725 - 746
  • [36] Proofreading mechanism for colloidal self-assembly
    Zhu, Qian-Ze
    Du, Chrisy Xiyu
    King, Ella M.
    Brenner, Michael P.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [37] COLLOIDAL SELF-ASSEMBLY Reversible actuation
    Furst, Eric M.
    NATURE MATERIALS, 2015, 14 (01) : 19 - 20
  • [38] Feedback Controlled Colloidal Self-Assembly
    Juarez, Jaime J.
    Bevan, Michael A.
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (18) : 3833 - 3839
  • [39] Self-assembly of charged colloidal cubes
    Rosenberg, Margaret
    Dekker, Frans
    Donaldson, Joe G.
    Philipse, Albert P.
    Kantorovich, Sofia S.
    SOFT MATTER, 2020, 16 (18) : 4451 - 4461
  • [40] Nanolithographic self-assembly of colloidal nanoparticles
    V. A. Moshnikov
    A. I. Maksimov
    O. A. Aleksandrova
    I. A. Pronin
    A. A. Karmanov
    E. I. Terukov
    N. D. Yakushova
    I. A. Averin
    A. A. Bobkov
    N. V. Permyakov
    Technical Physics Letters, 2016, 42 : 967 - 969