Enhancing smart contract security: Leveraging pre-trained language models for advanced vulnerability detection

被引:0
|
作者
He F. [1 ]
Li F. [1 ]
Liang P. [1 ]
机构
[1] College of Blockchain Industry, Chengdu University of Information Technology, Sichuan, Chengdu
来源
IET Blockchain | 2024年 / 4卷 / S1期
关键词
artificial intelligence; blockchain applications and digital technology; blockchains; contracts; decentralized applications;
D O I
10.1049/blc2.12072
中图分类号
学科分类号
摘要
The burgeoning interest in decentralized applications (Dapps), spurred by advancements in blockchain technology, underscores the critical role of smart contracts. However, many Dapp users, often without deep knowledge of smart contracts, face financial risks due to hidden vulnerabilities. Traditional methods for detecting these vulnerabilities, including manual inspections and automated static analysis, are plagued by issues such as high rates of false positives and overlooked security flaws. To combat this, the article introduces an innovative approach using the bidirectional encoder representations from transformers (BERT)-ATT-BiLSTM model for identifying potential weaknesses in smart contracts. This method leverages the BERT pre-trained model to discern semantic features from contract opcodes, which are then refined using a Bidirectional Long Short-Term Memory Network (BiLSTM) and augmented by an attention mechanism that prioritizes critical features. The goal is to improve the model's generalization ability and enhance detection accuracy. Experiments on various publicly available smart contract datasets confirm the model's superior performance, outperforming previous methods in key metrics like accuracy, F1-score, and recall. This research not only offers a powerful tool to bolster smart contract security, mitigating financial risks for average users, but also serves as a valuable reference for advancements in natural language processing and deep learning. © 2024 The Authors. IET Blockchain published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
引用
收藏
页码:543 / 554
相关论文
共 50 条
  • [21] An Empirical study on Pre-trained Embeddings and Language Models for Bot Detection
    Garcia-Silva, Andres
    Berrio, Cristian
    Manuel Gomez-Perez, Jose
    4TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP (REPL4NLP-2019), 2019, : 148 - 155
  • [22] LaoPLM: Pre-trained Language Models for Lao
    Lin, Nankai
    Fu, Yingwen
    Yang, Ziyu
    Chen, Chuwei
    Jiang, Shengyi
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6506 - 6512
  • [23] PhoBERT: Pre-trained language models for Vietnamese
    Dat Quoc Nguyen
    Anh Tuan Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1037 - 1042
  • [24] Deciphering Stereotypes in Pre-Trained Language Models
    Ma, Weicheng
    Scheible, Henry
    Wang, Brian
    Veeramachaneni, Goutham
    Chowdhary, Pratim
    Sung, Alan
    Koulogeorge, Andrew
    Wang, Lili
    Yang, Diyi
    Vosoughi, Soroush
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 11328 - 11345
  • [25] Knowledge Rumination for Pre-trained Language Models
    Yao, Yunzhi
    Wang, Peng
    Mao, Shengyu
    Tan, Chuanqi
    Huang, Fei
    Chen, Huajun
    Zhang, Ningyu
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 3387 - 3404
  • [26] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [27] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [28] Leveraging Pre-trained Language Model for Speech Sentiment Analysis
    Shon, Suwon
    Brusco, Pablo
    Pan, Jing
    Han, Kyu J.
    Watanabe, Shinji
    INTERSPEECH 2021, 2021, : 3420 - 3424
  • [29] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [30] Code Execution with Pre-trained Language Models
    Liu, Chenxiao
    Lu, Shuai
    Chen, Weizhu
    Jiang, Daxin
    Svyatkovskiy, Alexey
    Fu, Shengyu
    Sundaresan, Neel
    Duan, Nan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 4984 - 4999