Mobile Robot Positioning with Wireless Fidelity Fingerprinting and Explainable Artificial Intelligence

被引:0
|
作者
Abaci, Huseyin [1 ]
Seckin, Ahmet cagdas [1 ]
机构
[1] Adnan Menderes Univ, Engn Fac, Comp Engn Dept, TR-09100 Aydin, Turkiye
关键词
explainable artificial intelligence; internet of things; machine learning; mobile robot; positioning; wireless fidelity fingerprinting; INDOOR LOCALIZATION;
D O I
10.3390/s24247943
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Wireless Fidelity (Wi-Fi) based positioning has gained popularity for accurate indoor robot positioning in indoor navigation. In daily life, it is a low-cost solution because Wi-Fi infrastructure is already installed in many indoor areas. In addition, unlike the Global Navigation Satellite System (GNSS), Wi-Fi is more suitable for use indoors because signal blocking, attenuation, and reflection restrictions create a unique pattern in places with many Wi-Fi transmitters, and more precise positioning can be performed than GNSS. This paper proposes a machine learning-based method for Wi-Fi-enabled robot positioning in indoor environments. The contributions of this research include comprehensive 3D position estimation, utilization of existing Wi-Fi infrastructure, and a carefully collected dataset for evaluation. The results indicate that the AdaBoost algorithm attains a notable level of accuracy, utilizing the dBm signal strengths from Wi-Fi access points distributed throughout a four-floor building. The mean average error (MAE) values obtained in three axes with the Adaptive Boosting algorithm are 0.044 on the x-axis, 0.063 on the y-axis, and 0.003 m on the z-axis, respectively. In this study, the importance of various Wi-Fi access points was examined with explainable artificial intelligence methods, and the positioning performances obtained by using data from a smaller number of access points were examined. As a result, even when positioning was conducted with only seven selected Wi-Fi access points, the MAE value was found to be 0.811 for the x-axis, 0.492 for the y-axis, and 0.134 for the Z-axis, respectively.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Is explainable artificial intelligence intrinsically valuable?
    Nathan Colaner
    AI & SOCIETY, 2022, 37 : 231 - 238
  • [32] Scientific Exploration and Explainable Artificial Intelligence
    Zednik, Carlos
    Boelsen, Hannes
    MINDS AND MACHINES, 2022, 32 (01) : 219 - 239
  • [33] A survey of explainable artificial intelligence decision
    Kong X.
    Tang X.
    Wang Z.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2021, 41 (02): : 524 - 536
  • [34] Explainable artificial intelligence: a comprehensive review
    Dang Minh
    H. Xiang Wang
    Y. Fen Li
    Tan N. Nguyen
    Artificial Intelligence Review, 2022, 55 : 3503 - 3568
  • [35] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [36] Audio Explainable Artificial Intelligence: A Review
    Akman, Alican
    Schuller, Bjorn W.
    INTELLIGENT COMPUTING, 2024, 2
  • [37] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    COMPUTER, 2021, 54 (10) : 25 - 27
  • [38] Explainable artificial intelligence for digital forensics
    Hall, Stuart W.
    Sakzad, Amin
    Choo, Kim-Kwang Raymond
    WILEY INTERDISCIPLINARY REVIEWS: FORENSIC SCIENCE, 2022, 4 (02):
  • [39] From Explainable to Reliable Artificial Intelligence
    Narteni, Sara
    Ferretti, Melissa
    Orani, Vanessa
    Vaccari, Ivan
    Cambiaso, Enrico
    Mongelli, Maurizio
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION (CD-MAKE 2021), 2021, 12844 : 255 - 273
  • [40] A review of Explainable Artificial Intelligence in healthcare
    Sadeghi, Zahra
    Alizadehsani, Roohallah
    Cifci, Mehmet Akif
    Kausar, Samina
    Rehman, Rizwan
    Mahanta, Priyakshi
    Bora, Pranjal Kumar
    Almasri, Ammar
    Alkhawaldeh, Rami S.
    Hussain, Sadiq
    Alatas, Bilal
    Shoeibi, Afshin
    Moosaei, Hossein
    Hladik, Milan
    Nahavandi, Saeid
    Pardalos, Panos M.
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118