Mobile Robot Positioning with Wireless Fidelity Fingerprinting and Explainable Artificial Intelligence

被引:0
|
作者
Abaci, Huseyin [1 ]
Seckin, Ahmet cagdas [1 ]
机构
[1] Adnan Menderes Univ, Engn Fac, Comp Engn Dept, TR-09100 Aydin, Turkiye
关键词
explainable artificial intelligence; internet of things; machine learning; mobile robot; positioning; wireless fidelity fingerprinting; INDOOR LOCALIZATION;
D O I
10.3390/s24247943
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Wireless Fidelity (Wi-Fi) based positioning has gained popularity for accurate indoor robot positioning in indoor navigation. In daily life, it is a low-cost solution because Wi-Fi infrastructure is already installed in many indoor areas. In addition, unlike the Global Navigation Satellite System (GNSS), Wi-Fi is more suitable for use indoors because signal blocking, attenuation, and reflection restrictions create a unique pattern in places with many Wi-Fi transmitters, and more precise positioning can be performed than GNSS. This paper proposes a machine learning-based method for Wi-Fi-enabled robot positioning in indoor environments. The contributions of this research include comprehensive 3D position estimation, utilization of existing Wi-Fi infrastructure, and a carefully collected dataset for evaluation. The results indicate that the AdaBoost algorithm attains a notable level of accuracy, utilizing the dBm signal strengths from Wi-Fi access points distributed throughout a four-floor building. The mean average error (MAE) values obtained in three axes with the Adaptive Boosting algorithm are 0.044 on the x-axis, 0.063 on the y-axis, and 0.003 m on the z-axis, respectively. In this study, the importance of various Wi-Fi access points was examined with explainable artificial intelligence methods, and the positioning performances obtained by using data from a smaller number of access points were examined. As a result, even when positioning was conducted with only seven selected Wi-Fi access points, the MAE value was found to be 0.811 for the x-axis, 0.492 for the y-axis, and 0.134 for the Z-axis, respectively.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Memristive Explainable Artificial Intelligence Hardware
    Song, Hanchan
    Park, Woojoon
    Kim, Gwangmin
    Choi, Moon Gu
    In, Jae Hyun
    Rhee, Hakseung
    Kim, Kyung Min
    ADVANCED MATERIALS, 2024, 36 (25)
  • [22] Effects of Explainable Artificial Intelligence in Neurology
    Gombolay, G.
    Silva, A.
    Schrum, M.
    Dutt, M.
    Hallman-Cooper, J.
    Gombolay, M.
    ANNALS OF NEUROLOGY, 2023, 94 : S145 - S145
  • [23] Drug discovery with explainable artificial intelligence
    Jimenez-Luna, Jose
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE MACHINE INTELLIGENCE, 2020, 2 (10) : 573 - 584
  • [24] Explainable Artificial Intelligence for Combating Cyberbullying
    Tesfagergish, Senait Gebremichael
    Damasevicius, Robertas
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 1, ICSOFTCOMP 2023, 2024, 2030 : 54 - 67
  • [25] Drug discovery with explainable artificial intelligence
    José Jiménez-Luna
    Francesca Grisoni
    Gisbert Schneider
    Nature Machine Intelligence, 2020, 2 : 573 - 584
  • [26] Explainable and responsible artificial intelligence PREFACE
    Meske, Christian
    Abedin, Babak
    Klier, Mathias
    Rabhi, Fethi
    ELECTRONIC MARKETS, 2022, 32 (04) : 2103 - 2106
  • [27] A Survey on Explainable Artificial Intelligence for Cybersecurity
    Rjoub, Gaith
    Bentahar, Jamal
    Wahab, Omar Abdel
    Mizouni, Rabeb
    Song, Alyssa
    Cohen, Robin
    Otrok, Hadi
    Mourad, Azzam
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 5115 - 5140
  • [28] Scientific Exploration and Explainable Artificial Intelligence
    Carlos Zednik
    Hannes Boelsen
    Minds and Machines, 2022, 32 : 219 - 239
  • [29] Blockchain for explainable and trustworthy artificial intelligence
    Nassar, Mohamed
    Salah, Khaled
    Rehman, Muhammad Habib ur
    Svetinovic, Davor
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (01)
  • [30] Explainable artificial intelligence: an analytical review
    Angelov, Plamen P.
    Soares, Eduardo A.
    Jiang, Richard
    Arnold, Nicholas I.
    Atkinson, Peter M.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)