Tuning the performance of PSCs using rare-earth elements

被引:0
|
作者
Sajid, Sajid [1 ,2 ]
Alzahmi, Salem [1 ,2 ]
Tabet, Nouar [3 ]
Al-Haik, Mohammad Y. [4 ]
Abdel-Hafiez, Mahmoud [3 ]
Haik, Yousef [5 ,6 ]
Obaidat, Ihab M. [3 ]
机构
[1] United Arab Emirates Univ, Dept Chem & Petr Engn, POB 15551, Al Ain, U Arab Emirates
[2] United Arab Emirates Univ, Natl Water & Energy Ctr, POB 15551, Al Ain, U Arab Emirates
[3] Univ Sharjah, Dept Appl Phys & Astron, POB 27272, Sharjah, U Arab Emirates
[4] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, Sharjah 27272, U Arab Emirates
[5] Univ Sharjah, Dept Mech & Nucl Engn, Sharjah, U Arab Emirates
[6] Univ Jordan, Dept Mech Engn, Amman, Jordan
关键词
PEROVSKITE SOLAR-CELLS; HOLE TRANSPORT LAYER; UP-CONVERSION; INORGANIC PEROVSKITE; HALIDE PEROVSKITE; DOPED TIO2; EFFICIENCY; BETA-NAYF4YB3+; ULTRAVIOLET; ENHANCEMENT;
D O I
10.1039/d4tc03798g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Perovskite solar cells (PSCs) are emerging and promising alternatives to the market-leading solar cells due to their high performance, low fabrication cost, and versatile material modification. There are still opportunities to enhance the performance of PSCs, such as regulating mismatched absorption and limiting degradation brought about by some parts of light. Rare-earth elements (REEs) have the potential to be useful in this context. Due to their diverse energetic transition orbitals, REEs can transform ultraviolet (UV) and infrared (IR) light into visible light, which helps to improve the photostability of PSCs in addition to allowing more light absorption. Furthermore, their reversible redox potential can help prevent degradation caused by the redox reaction of other functional materials used in PSCs. As interface modifiers, REEs have the ability to induce the formation of a donor-acceptor complex, which can overcome the interface barrier and enable high charge-carrier collecting ability. In this regard, we will scrutinize PSCs that utilize REEs as electron transporting materials, hole transporting materials, additives in perovskites, and interface modifiers. We also offer the possible future research directions and limitations of using REEs in PSCs for high stability and increased efficiency.
引用
收藏
页码:18575 / 18590
页数:16
相关论文
共 50 条
  • [41] RARE-EARTH ELEMENTS IN RIVER WATERS
    GOLDSTEIN, SJ
    JACOBSEN, SB
    EARTH AND PLANETARY SCIENCE LETTERS, 1988, 89 (01) : 35 - 47
  • [42] THE OCEANIC CHEMISTRY OF THE RARE-EARTH ELEMENTS
    ELDERFIELD, H
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 325 (1583): : 105 - 126
  • [43] METHODS OF DETERMINATION OF RARE-EARTH ELEMENTS
    JANOS, P
    SULCEK, Z
    CHEMICKE LISTY, 1990, 84 (03): : 264 - 280
  • [44] BIPROTONATED AMINOETHYLIDENEDIPHOSPHONATES OF RARE-EARTH ELEMENTS
    AFONIN, EG
    BAUKOVA, EY
    PECHUROVA, NI
    ILINSKII, AL
    ZHURNAL NEORGANICHESKOI KHIMII, 1989, 34 (05): : 1150 - 1153
  • [45] CHROMATES OF SEVERAL RARE-EARTH ELEMENTS
    TANANAEV, NV
    BASHILOV.NI
    TAKHANOV.ES
    ZHURNAL NEORGANICHESKOI KHIMII, 1970, 15 (10): : 2873 - &
  • [46] RARE-EARTH ELEMENTS IN LUNAR MATERIALS
    HASKIN, LA
    GEOCHEMISTRY AND MINERALOGY OF RARE EARTH ELEMENTS, 1989, 21 : 227 - 258
  • [47] FLAME SPECTRA OF THE RARE-EARTH ELEMENTS
    FASSEL, VA
    CURRY, RH
    KNISELEY, RN
    SPECTROCHIMICA ACTA, 1962, 18 (09): : 1127 - 1153
  • [48] ELECTRON CONFIGURATIONS OF RARE-EARTH ELEMENTS
    MEGGERS, WF
    SCIENCE, 1947, 105 (2733) : 514 - 516
  • [49] MARINE GEOCHEMISTRY OF THE RARE-EARTH ELEMENTS
    ELDERFIELD, H
    JOURNAL OF THE GEOLOGICAL SOCIETY, 1982, 139 (SEP) : 660 - 660
  • [50] Organosilicon sorbents for rare-earth elements
    Pozhidaev, Yu.N.
    Panezhda, E.V.
    Grigor'eva, O.Ui.
    Kirillov, A.I.
    Belousova, L.I.
    Vlasova, N.N.
    Voronkov, M.G.
    Doklady Akademii Nauk, 2003, 393 (05) : 629 - 633