Tuning the performance of PSCs using rare-earth elements

被引:0
|
作者
Sajid, Sajid [1 ,2 ]
Alzahmi, Salem [1 ,2 ]
Tabet, Nouar [3 ]
Al-Haik, Mohammad Y. [4 ]
Abdel-Hafiez, Mahmoud [3 ]
Haik, Yousef [5 ,6 ]
Obaidat, Ihab M. [3 ]
机构
[1] United Arab Emirates Univ, Dept Chem & Petr Engn, POB 15551, Al Ain, U Arab Emirates
[2] United Arab Emirates Univ, Natl Water & Energy Ctr, POB 15551, Al Ain, U Arab Emirates
[3] Univ Sharjah, Dept Appl Phys & Astron, POB 27272, Sharjah, U Arab Emirates
[4] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, Sharjah 27272, U Arab Emirates
[5] Univ Sharjah, Dept Mech & Nucl Engn, Sharjah, U Arab Emirates
[6] Univ Jordan, Dept Mech Engn, Amman, Jordan
关键词
PEROVSKITE SOLAR-CELLS; HOLE TRANSPORT LAYER; UP-CONVERSION; INORGANIC PEROVSKITE; HALIDE PEROVSKITE; DOPED TIO2; EFFICIENCY; BETA-NAYF4YB3+; ULTRAVIOLET; ENHANCEMENT;
D O I
10.1039/d4tc03798g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Perovskite solar cells (PSCs) are emerging and promising alternatives to the market-leading solar cells due to their high performance, low fabrication cost, and versatile material modification. There are still opportunities to enhance the performance of PSCs, such as regulating mismatched absorption and limiting degradation brought about by some parts of light. Rare-earth elements (REEs) have the potential to be useful in this context. Due to their diverse energetic transition orbitals, REEs can transform ultraviolet (UV) and infrared (IR) light into visible light, which helps to improve the photostability of PSCs in addition to allowing more light absorption. Furthermore, their reversible redox potential can help prevent degradation caused by the redox reaction of other functional materials used in PSCs. As interface modifiers, REEs have the ability to induce the formation of a donor-acceptor complex, which can overcome the interface barrier and enable high charge-carrier collecting ability. In this regard, we will scrutinize PSCs that utilize REEs as electron transporting materials, hole transporting materials, additives in perovskites, and interface modifiers. We also offer the possible future research directions and limitations of using REEs in PSCs for high stability and increased efficiency.
引用
收藏
页码:18575 / 18590
页数:16
相关论文
共 50 条
  • [31] STUDY OF THE POSSIBILITY OF USING COMPLEX-COMPOUNDS OF RARE-EARTH ELEMENTS, FORMED WITH ETHYLENEDIAMINEDISUECINIC ACID, FOR THE FORMATION OF MIXTURES OF RARE-EARTH ELEMENTS
    MARTYNENKO, LI
    MURATOVA, NM
    BORISOVA, AP
    ZHURNAL NEORGANICHESKOI KHIMII, 1980, 25 (03): : 713 - 716
  • [32] Mineral economics of the rare-earth elements
    Simon M. Jowitt
    MRS Bulletin, 2022, 47 : 276 - 282
  • [33] ADVANCES IN CHROMATOGRAPHY OF THE RARE-EARTH ELEMENTS
    OGUMA, K
    SHIMIZU, T
    KURODA, R
    BUNSEKI KAGAKU, 1995, 44 (01) : 1 - 17
  • [34] RARE-EARTH ELEMENTS IN URINARY CALCULI
    HOBARTH, K
    KOEBERL, C
    HOFBAUER, J
    UROLOGICAL RESEARCH, 1993, 21 (04): : 261 - 264
  • [35] RARE-EARTH ELEMENTS IN ULTRABASITES OF BULGARIA
    ALEKSIYE.E
    ZHELYAZK.M
    GEOCHEMISTRY INTERNATIONAL USSR, 1971, 8 (05): : 779 - &
  • [36] GERMANATES OF ALKALI AND RARE-EARTH ELEMENTS
    CHIGAREVA, OG
    GREBENSHCHIKOV, RG
    ROMANOV, DP
    ZHURNAL NEORGANICHESKOI KHIMII, 1987, 32 (10): : 2600 - 2602
  • [37] INTERACTION OF RARE-EARTH ELEMENTS WITH SULFUR
    ANDREEV, OV
    PARSHUKOV, NN
    ANDREEVA, VM
    ZHURNAL NEORGANICHESKOI KHIMII, 1994, 39 (01): : 6 - 9
  • [38] OXYCHLORIDES OF HEAVY RARE-EARTH ELEMENTS
    BECK, HP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 1976, 31 (12): : 1562 - 1564
  • [39] Processing the ores of rare-earth elements
    McNulty, Terry
    Hazen, Nick
    Park, Sulgiye
    MRS BULLETIN, 2022, 47 (03) : 258 - 266
  • [40] RARE-EARTH ELEMENTS IN SKAERGAARD INTRUSION
    HASKIN, LA
    HASKIN, MA
    GEOCHIMICA ET COSMOCHIMICA ACTA, 1968, 32 (04) : 433 - &