Quantum computing topological invariants of two-dimensional quantum matter

被引:0
|
作者
Niedermeier, Marcel [1 ]
Nairn, Marc [2 ]
Flindt, Christian [1 ,3 ]
Lado, Jose L. [1 ]
机构
[1] Department of Applied Physics, Aalto University, Espoo,02150, Finland
[2] Institut für Theoretische Physik, Universität Tübingen, Tübingen,72076, Germany
[3] RIKEN, Center for Quantum Computing, Wakoshi, Saitama,351-0198, Japan
来源
Physical Review Research | 2024年 / 6卷 / 04期
关键词
D O I
10.1103/PhysRevResearch.6.043288
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Tunable topological quantum states in three- and two-dimensional materials
    Ming Yang
    Xiao-Long Zhang
    Wu-Ming Liu
    Frontiers of Physics, 2015, 10 : 161 - 176
  • [42] Tunable topological quantum states in three- and two-dimensional materials
    Yang, Ming
    Zhang, Xiao-Long
    Liu, Wu-Ming
    FRONTIERS OF PHYSICS, 2015, 10 (02) : 161 - 176
  • [43] Microwave Photoresistance of a Two-Dimensional Topological Insulator in a HgTe Quantum Well
    Yaroshevich, A. S.
    Kvon, Z. D.
    Gusev, G. M.
    Mikhailov, N. N.
    JETP LETTERS, 2020, 111 (02) : 121 - 125
  • [44] Two-dimensional topological insulator state in double HgTe quantum well
    Gusev, G. M.
    Olshanetsky, E. B.
    Hernandez, F. G. G.
    Raichev, O. E.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [45] Energy Relaxation in a Quantum Dot at the Edge of a Two-Dimensional Topological Insulator
    Khomitsky, D. V.
    Lavrukhina, E. A.
    Chubanov, A. A.
    Njiya, N.
    SEMICONDUCTORS, 2017, 51 (11) : 1505 - 1512
  • [46] Energy relaxation in a quantum dot at the edge of a two-dimensional topological insulator
    D. V. Khomitsky
    E. A. Lavrukhina
    A. A. Chubanov
    N. Njiya
    Semiconductors, 2017, 51 : 1505 - 1512
  • [47] Characterization of three-dimensional topological insulators by two-dimensional invariants
    Roy, Rahul
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [48] TWO-DIMENSIONAL QUANTUM GEOMETRY
    Ambjorn, J.
    Budd, T.
    ACTA PHYSICA POLONICA B, 2013, 44 (12): : 2537 - 2557
  • [49] Latency in local, two-dimensional, fault-tolerant quantum computing
    Spedalieri, Federico M.
    Roychowdhury, Vwani P.
    Quantum Information and Computation, 2009, 9 (7-8): : 0666 - 0682
  • [50] Two-dimensional quantum geometry
    Ambjorn, J
    Nielsen, JL
    Rolf, J
    THEORY OF ELEMENTARY PARTICLES, 1998, : 412 - 422