Quantum computing topological invariants of two-dimensional quantum matter

被引:0
|
作者
Niedermeier, Marcel [1 ]
Nairn, Marc [2 ]
Flindt, Christian [1 ,3 ]
Lado, Jose L. [1 ]
机构
[1] Department of Applied Physics, Aalto University, Espoo,02150, Finland
[2] Institut für Theoretische Physik, Universität Tübingen, Tübingen,72076, Germany
[3] RIKEN, Center for Quantum Computing, Wakoshi, Saitama,351-0198, Japan
来源
Physical Review Research | 2024年 / 6卷 / 04期
关键词
D O I
10.1103/PhysRevResearch.6.043288
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Induced vacuum magnetic flux in quantum spinor matter in the background of a topological defect in two-dimensional space
    Sitenko, Yurii A.
    Gorkavenko, Volodymyr M.
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [22] TOPOLOGICAL TERMS IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL QUANTUM HEISENBERG ANTIFERROMAGNETS
    FRADKIN, E
    STONE, M
    PHYSICAL REVIEW B, 1988, 38 (10): : 7215 - 7218
  • [23] Quantum atomic matter near two-dimensional materials in microgravity
    Del Maestro, Adrian
    Kim, Sang Wook
    Bigelow, Nicholas P.
    Thompson, Robert J.
    Kotov, Valeri N.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)
  • [24] Quantum simulations with a two-dimensional Quantum Walk
    Schreiber, A.
    Gabris, A.
    Rohde, P. P.
    Laiho, K.
    Stefanak, M.
    Potocek, V.
    Hamilton, C.
    Jex, I.
    Silberhorn, C.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [25] Quantum flatness in two-dimensional quantum gravity
    Brunekreef, J.
    Loll, R.
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [26] Invariants of topological quantum mechanics
    Mekhfi, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (08) : 1709 - 1718
  • [27] Topological invariants in quantum walks
    Grudka, Andrzej
    Karczewski, Marcin
    Kurzynski, Pawel
    Wojcik, Jan
    Wojcik, Antoni
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [28] Observables in three-dimensional quantum gravity and topological invariants
    García-Islas, JM
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (16) : 3933 - 3951
  • [29] TOPOLOGICAL QUANTUM PHASE TRANSITIONS IN TWO-DIMENSIONAL HEXAGONAL LATTICE BILAYERS
    Zhai, Xuechao
    Jin, Guojun
    SPIN, 2013, 3 (02)
  • [30] Localization, delocalization, and topological transitions in disordered two-dimensional quantum walks
    Edge, Jonathan M.
    Asboth, Janos K.
    PHYSICAL REVIEW B, 2015, 91 (10)