Noise classification in three-level quantum networks by Machine Learning

被引:0
|
作者
Mukherjee, Shreyasi [1 ]
Penna, Dario [2 ]
Cirinna, Fabio [2 ]
Paternostro, Mauro [3 ,4 ]
Paladino, Elisabetta [1 ,5 ,6 ]
Falci, Giuseppe [1 ,5 ,6 ]
Giannelli, Luigi [1 ,5 ]
机构
[1] Univ Catania, Dipartimento Fis & Astron Ettore Majorana, Via S Sofia 64, I-95123 Catania, Italy
[2] Leonardo SpA, Cyber & Secur Solut, I-95121 Catania, Italy
[3] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, via Archirafi 36, I-90123 Palermo, Italy
[4] Sez Catania, INFN, Sch Math & Phys, I-95123 Catania, Italy
[5] INFN, Sez Catania, Catania, Italy
[6] UoS Univ, CNR IMM, I-95123 Catania, Italy
来源
基金
英国工程与自然科学研究理事会;
关键词
machine learning for quantum; three-level system; noise classification; (non-)Markovianity; noise correlations; quantum network; STATE;
D O I
10.1088/2632-2153/ad9193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate a machine learning based classification of noise acting on a small quantum network with the aim of detecting spatial or multilevel correlations, and the interplay with Markovianity. We control a three-level system by inducing coherent population transfer exploiting different pulse amplitude combinations as inputs to train a feedforward neural network. We show that supervised learning can classify different types of classical dephasing noise affecting the system. Three non-Markovian (quasi-static correlated, anti-correlated and uncorrelated) and Markovian noises are classified with more than 99% accuracy. On the contrary, correlations of Markovian noise cannot be discriminated with our method. Our approach is robust to statistical measurement errors and retains its effectiveness for physical measurements where only a limited number of samples is available making it very experimental-friendly. Our result paves the way for classifying spatial correlations of noise in quantum architectures.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Design of Three-level Minimal Switching Networks.
    Meister, W.
    Elektronische Rechenanlagen mit Computer Praxis, 1984, 26 (03): : 119 - 130
  • [42] Quantum machine learning for image classification
    Senokosov, Arsenii
    Sedykh, Alexandr
    Sagingalieva, Asel
    Kyriacou, Basil
    Melnikov, Alexey
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [43] Quantum machine learning for support vector machine classification
    S. S. Kavitha
    Narasimha Kaulgud
    Evolutionary Intelligence, 2024, 17 : 819 - 828
  • [44] Quantum machine learning for support vector machine classification
    Kavitha, S. S.
    Kaulgud, Narasimha
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (02) : 819 - 828
  • [45] Start-up demonstration tests with three-level classification
    Rakitzis, Athanasios C.
    Antzoulakos, Demetrios L.
    STATISTICAL PAPERS, 2015, 56 (01) : 1 - 21
  • [46] Start-up demonstration tests with three-level classification
    Athanasios C. Rakitzis
    Demetrios L. Antzoulakos
    Statistical Papers, 2015, 56 : 1 - 21
  • [47] Vector classification and voltage control in PWM three-level inverters
    Saeedifard, M
    Bakhshai, AR
    PESC 04: 2004 IEEE 35TH ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, CONFERENCE PROCEEDINGS, 2004, : 4411 - 4417
  • [48] The Three-Level Collaboration Exercise - Impact of Learning and Usefulness
    Berlin, Johan M.
    Carlstroem, Eric D.
    JOURNAL OF CONTINGENCIES AND CRISIS MANAGEMENT, 2015, 23 (04) : 257 - 265
  • [49] Tensor networks for quantum machine learning
    Rieser, Hans-Martin
    Koester, Frank
    Raulf, Arne Peter
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2275):
  • [50] Advances in quantum control of three-level superconducting circuit architectures
    Falci, G.
    Di Stefano, P. G.
    Ridolfo, A.
    D'Arrigo, A.
    Paraoanu, G. S.
    Paladino, E.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8):