Noise classification in three-level quantum networks by Machine Learning

被引:0
|
作者
Mukherjee, Shreyasi [1 ]
Penna, Dario [2 ]
Cirinna, Fabio [2 ]
Paternostro, Mauro [3 ,4 ]
Paladino, Elisabetta [1 ,5 ,6 ]
Falci, Giuseppe [1 ,5 ,6 ]
Giannelli, Luigi [1 ,5 ]
机构
[1] Univ Catania, Dipartimento Fis & Astron Ettore Majorana, Via S Sofia 64, I-95123 Catania, Italy
[2] Leonardo SpA, Cyber & Secur Solut, I-95121 Catania, Italy
[3] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, via Archirafi 36, I-90123 Palermo, Italy
[4] Sez Catania, INFN, Sch Math & Phys, I-95123 Catania, Italy
[5] INFN, Sez Catania, Catania, Italy
[6] UoS Univ, CNR IMM, I-95123 Catania, Italy
来源
基金
英国工程与自然科学研究理事会;
关键词
machine learning for quantum; three-level system; noise classification; (non-)Markovianity; noise correlations; quantum network; STATE;
D O I
10.1088/2632-2153/ad9193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate a machine learning based classification of noise acting on a small quantum network with the aim of detecting spatial or multilevel correlations, and the interplay with Markovianity. We control a three-level system by inducing coherent population transfer exploiting different pulse amplitude combinations as inputs to train a feedforward neural network. We show that supervised learning can classify different types of classical dephasing noise affecting the system. Three non-Markovian (quasi-static correlated, anti-correlated and uncorrelated) and Markovian noises are classified with more than 99% accuracy. On the contrary, correlations of Markovian noise cannot be discriminated with our method. Our approach is robust to statistical measurement errors and retains its effectiveness for physical measurements where only a limited number of samples is available making it very experimental-friendly. Our result paves the way for classifying spatial correlations of noise in quantum architectures.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Tomography vs quantum control for a three-level atom
    Aguilar, O.
    Klimov, A. B.
    de Guise, Hubert
    PHYSICS LETTERS A, 2006, 359 (05) : 373 - 380
  • [22] Coherent Three-Level Mixing in an Electronic Quantum Dot
    Payette, C.
    Yu, G.
    Gupta, J. A.
    Austing, D. G.
    Nair, S. V.
    Partoens, B.
    Amaha, S.
    Tarucha, S.
    PHYSICAL REVIEW LETTERS, 2009, 102 (02)
  • [23] q-Deformed three-level quantum logic
    Azmi Ali Altintas
    Fatih Ozaydin
    Cihan Bayındır
    Quantum Information Processing, 2020, 19
  • [24] Observing Geometry of Quantum States in a Three-Level System
    Xie, Jie
    Zhang, Aonan
    Cao, Ningping
    Xu, Huichao
    Zheng, Kaimin
    Poon, Yiu-Tung
    Sze, Nung-Sing
    Xu, Ping
    Zeng, Bei
    Zhang, Lijian
    PHYSICAL REVIEW LETTERS, 2020, 125 (15)
  • [25] Dispersion of a three-level quantum system in a bichromatic field
    Svistun A.Ch.
    Gaida L.S.
    Afanas'Ev A.A.
    Journal of Applied Spectroscopy, 2007, 74 (5) : 697 - 703
  • [26] q-Deformed three-level quantum logic
    Altintas, Azmi Ali
    Ozaydin, Fatih
    Bayindir, Cihan
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [27] Geometric quantum phase for three-level mixed state
    Rao Huang-Yun
    Liu Yi-Bao
    Jiang Yan-Yan
    Guo Li-Ping
    Wang Zi-Sheng
    ACTA PHYSICA SINICA, 2012, 61 (02)
  • [28] Measures of quantum entanglement for three-level bipartite systems
    Herreño, C
    Luthra, SR
    Luthra, JR
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 245 - 248
  • [29] Berry phase for a nondegenerate three-level quantum system
    Bukanov, IV
    Tolkachev, EA
    Tregubovich, AY
    PHYSICS OF ATOMIC NUCLEI, 1996, 59 (04) : 659 - 661
  • [30] Effect of dephasing on superadiabatic three-level quantum driving
    Issoufa, Youssouf Hamidou
    Messikh, Azeddine
    PHYSICAL REVIEW A, 2014, 90 (05):