Identifying spatial domains from spatial transcriptome by graph attention network

被引:0
|
作者
Wu H. [1 ]
Gao J. [1 ]
机构
[1] Jiangnan University, Wuxi, 214122, Jiangsu
关键词
Clustering analysis; Deep learning; Graph attention network; Spatial transcriptomics;
D O I
10.7507/1001-5515.202304030
中图分类号
学科分类号
摘要
由于数据的高维和复杂性,空间转录组数据的分析一直是一个具有挑战性的问题,而聚类分析则是空间转录组数据分析的核心问题。本文提出了一种基于图注意力网络的深度学习方法,用于空间转录组数据的聚类分析。首先,对空间转录组数据进行增强,然后使用图注意力网络对节点进行特征提取,最后使用莱顿(Leiden)算法进行聚类分析。通过聚类的评价指标发现,与传统的非空间及空间聚类方法相比,本文提出的方法具有更好的数据分析性能。实验结果表明,本文所提方法可以有效地聚类空间转录组数据,从而能够识别不同的空间区域,为研究空间转录组数据提供了新的工具。.; Due to the high dimensionality and complexity of the data, the analysis of spatial transcriptome data has been a challenging problem. Meanwhile, cluster analysis is the core issue of the analysis of spatial transcriptome data. In this article, a deep learning approach is proposed based on graph attention networks for clustering analysis of spatial transcriptome data. Our method first enhances the spatial transcriptome data, then uses graph attention networks to extract features from nodes, and finally uses the Leiden algorithm for clustering analysis. Compared with the traditional non-spatial and spatial clustering methods, our method has better performance in data analysis through the clustering evaluation index. The experimental results show that the proposed method can effectively cluster spatial transcriptome data and identify different spatial domains, which provides a new tool for studying spatial transcriptome data.
引用
下载
收藏
页码:246 / 252
页数:6
相关论文
共 50 条
  • [31] A spatial-temporal graph attention network approach for air temperature forecasting
    Yu, Xuan
    Shi, Suixiang
    Xu, Lingyu
    APPLIED SOFT COMPUTING, 2021, 113 (113)
  • [32] Spatial graph attention network-based object tracking with adaptive cosine window
    Fan, Liu-Yi
    Jiang, Xiao-Yan
    Huang, Bo
    Zhang, Juan
    Gao, Yong-Bin
    APPLIED INTELLIGENCE, 2023, 53 (22) : 26439 - 26453
  • [33] Spatial graph attention network-based object tracking with adaptive cosine window
    Liu-Yi Fan
    Xiao-Yan Jiang
    Bo Huang
    Juan Zhang
    Yong-Bin Gao
    Applied Intelligence, 2023, 53 : 26439 - 26453
  • [34] Spatial–Temporal gated graph attention network for skeleton-based action recognition
    Mrugendrasinh Rahevar
    Amit Ganatra
    Pattern Analysis and Applications, 2023, 26 (3) : 929 - 939
  • [35] Spatial-Temporal Traffic Data Imputation via Graph Attention Convolutional Network
    Ye, Yongchao
    Zhang, Shiyao
    Yu, James J. Q.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 241 - 252
  • [36] Residual spatial graph convolution and temporal sequence attention network for sign language translation
    Wencheng Xu
    Jie Ying
    Haima Yang
    Jin Liu
    Xing Hu
    Multimedia Tools and Applications, 2023, 82 : 23483 - 23507
  • [37] Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network
    Guo, Qi
    Zhang, Shujun
    Li, Hui
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (03): : 1653 - 1670
  • [38] DynSTGAT: Dynamic Spatial-Temporal Graph Attention Network for Traffic Signal Control
    Wu, Libing
    Wang, Min
    Wu, Dan
    Wu, Jia
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2150 - 2159
  • [39] Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    Journal of Computers (Taiwan), 2024, 35 (04) : 93 - 108
  • [40] Residual spatial graph convolution and temporal sequence attention network for sign language translation
    Xu, Wencheng
    Ying, Jie
    Yang, Haima
    Liu, Jin
    Hu, Xing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (15) : 23483 - 23507