Identifying spatial domains from spatial transcriptome by graph attention network

被引:0
|
作者
Wu H. [1 ]
Gao J. [1 ]
机构
[1] Jiangnan University, Wuxi, 214122, Jiangsu
关键词
Clustering analysis; Deep learning; Graph attention network; Spatial transcriptomics;
D O I
10.7507/1001-5515.202304030
中图分类号
学科分类号
摘要
由于数据的高维和复杂性,空间转录组数据的分析一直是一个具有挑战性的问题,而聚类分析则是空间转录组数据分析的核心问题。本文提出了一种基于图注意力网络的深度学习方法,用于空间转录组数据的聚类分析。首先,对空间转录组数据进行增强,然后使用图注意力网络对节点进行特征提取,最后使用莱顿(Leiden)算法进行聚类分析。通过聚类的评价指标发现,与传统的非空间及空间聚类方法相比,本文提出的方法具有更好的数据分析性能。实验结果表明,本文所提方法可以有效地聚类空间转录组数据,从而能够识别不同的空间区域,为研究空间转录组数据提供了新的工具。.; Due to the high dimensionality and complexity of the data, the analysis of spatial transcriptome data has been a challenging problem. Meanwhile, cluster analysis is the core issue of the analysis of spatial transcriptome data. In this article, a deep learning approach is proposed based on graph attention networks for clustering analysis of spatial transcriptome data. Our method first enhances the spatial transcriptome data, then uses graph attention networks to extract features from nodes, and finally uses the Leiden algorithm for clustering analysis. Compared with the traditional non-spatial and spatial clustering methods, our method has better performance in data analysis through the clustering evaluation index. The experimental results show that the proposed method can effectively cluster spatial transcriptome data and identify different spatial domains, which provides a new tool for studying spatial transcriptome data.
引用
收藏
页码:246 / 252
页数:6
相关论文
共 50 条
  • [21] Image super -resolution via channel attention and spatial graph convolutional network
    Yang, Yue
    Qi, Yong
    [J]. PATTERN RECOGNITION, 2021, 112
  • [22] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    [J]. High Technology Letters, 2024, 30 (03) : 221 - 230
  • [23] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    [J]. MATHEMATICS, 2022, 10 (09)
  • [24] Spectral-Spatial Graph Attention Network for Semisupervised Hyperspectral Image Classification
    Zhao, Zhengang
    Wang, Hao
    Yu, Xianchuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    [J]. High Technology Letters, 2024, 30 (03) : 221 - 230
  • [26] Spatial-Temporal Attention Network for Crime Prediction with Adaptive Graph Learning
    Sun, Mingjie
    Zhou, Pengyuan
    Tian, Hui
    Liao, Yong
    Xie, Haiyong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 656 - 669
  • [27] Graspot: a graph attention network for spatial transcriptomics data integration with optimal transport
    Gao, Zizhan
    Cao, Kai
    Wan, Lin
    [J]. BIOINFORMATICS, 2024, 40 : ii137 - ii145
  • [28] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] Graph Neural Network for Fraud Detection via Spatial-Temporal Attention
    Cheng, Dawei
    Wang, Xiaoyang
    Zhang, Ying
    Zhang, Liqing
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3800 - 3813
  • [30] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    [J]. IEEE ACCESS, 2021, 9 : 8581 - 8594