Design and microstructural analysis of the mixture proportion of alkali-activated fly ash-slag composite cementitious material

被引:0
|
作者
Xu, Hongchun [1 ]
Yin, Hang [2 ]
Ge, Pei [3 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Civil Engn & Architecture, Zhengzhou 450046, Peoples R China
[2] Chongqing Univ, Liyang Smart City Res Inst, Chongqing 213300, Peoples R China
[3] China LiaoHe Petr Engn Co Ltd, Panjin 124010, Peoples R China
关键词
slag; fly ash; alkali activation; cementitious material; microstructure; mechanism;
D O I
10.1088/2053-1591/ad9083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To explore the resource utilization of fly ash, slag, and coal gangue, the composition of hydration products and strength characteristics of fly ash-slag composite cementitious material (FSGF) were studied with NaOH as an alkali activator. First, response surface analysis was used to determine factors influencing the optimal NaOH content, basalt fiber dosage, and length to obtain the complete mix ratio of the composite cementitious material. Microscopic techniques such as XRD, FTIR, TG-DSC, and SEM were employed to analyze the crystal structure, thermal properties, and micro-morphology of the composite cementitious material, and to investigate the mechanism of NaOH-activated fly ash-slag cementitious material. The results indicated that the sensitivity of each factor affecting the mechanical properties of the composite cementitious material followed this sequence: NaOH content > basalt fiber length > basalt fiber dosage, with varying degrees of interaction among them. When the mass ratio of fly ash, slag, and coal gangue was 5:1:4, with 3% NaOH by weight, 2% basalt fiber dosage, and a fiber length of 3 mm, the optimal mix was achieved. The composite material achieved a compressive strength of 8.97 MPa after 28 days of standard curing at room temperature. NaOH, as an alkali activator, provided the strong alkaline environment required for the initial hydration of fly ash-slag composite cementitious materials, promoting the hydration of slag and fly ash. The hydration products in the fly ash-slag composite system were unevenly distributed, primarily consisting of gels like C-S-H, C-A-H, and C-A-S-H. NaOH was highly effective as an alkali activator in the fly ash-slag system.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Durability of alkali-activated fly ash cementitious materials
    Fernandez-Jimenez, A.
    Garcia-Lodeiro, I.
    Palomo, A.
    JOURNAL OF MATERIALS SCIENCE, 2007, 42 (09) : 3055 - 3065
  • [32] Mechanical Characteristics Analysis of Alkali-Activated Fly Ash Cementitious Materials
    Ryu, Gum-Sung
    Kang, Hyun Jin
    Kang, Su-Tae
    Koh, Gyung-Taek
    Lee, Jang-Hwa
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS IX, 2011, 452-453 : 721 - 724
  • [33] Analysis of reaction degree and factors of alkali-activated fly ash/slag
    Wang, Bowen
    Liu, Yang
    Luo, Dong
    Yang, Yiwei
    Huang, Dunwen
    Peng, Hui
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (18) : 955 - 964
  • [34] Study on optimization of mixing ratio and shrinkage property of alkali-activated ultrafine fly ash-slag mortar
    Wang, Jun
    Wang, Haofan
    Li, Zhaoxi
    Yan, Jun
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [35] Effect of Steel Slag on the Properties of Alkali-Activated Slag Material: A Comparative Study with Fly Ash
    Han, Fanghui
    Zhu, Ziqin
    Zhang, Hongbo
    Li, Yuchen
    Fu, Ting
    MATERIALS, 2024, 17 (11)
  • [36] Effects of Mg-based admixtures on chloride diffusion in alkali-activated fly ash-slag mortars
    Zhang, Jingxiao
    Ma, Yuwei
    Zhang, Zuhua
    Yang, Xiaocong
    Nong, Xingzhong
    Wang, Hao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [37] Novel resource utilization of fly ash and blast furnace slag for formaldehyde-degrading alkali-activated cementitious composite
    Wang, Yidi
    Zhang, Na
    Zhang, Youpeng
    Cui, Shouhang
    Lu, Ping
    Zhang, Yihe
    CEMENT & CONCRETE COMPOSITES, 2024, 154
  • [38] Effect of active MgO on the hydration kinetics characteristics and microstructures of alkali-activated fly ash-slag materials
    Ma, Hongqiang
    Li, Xiaomeng
    Zheng, Xuan
    Niu, Xiaoyan
    Fang, Youliang
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 361
  • [39] In-situ X-ray tomographic imaging of microstructure evolution of fly ash and slag particles in alkali-activated fly ash-slag paste
    Fang, Guohao
    Wang, Qiang
    Zhang, Mingzhong
    COMPOSITES PART B-ENGINEERING, 2021, 224
  • [40] Effect of Mixture Variables on Durability for Alkali-Activated Slag Cementitious
    Hung, Chi-Che
    Wu, Yuan-Chieh
    Lin, Wei-Ting
    Chang, Jiang-Jhy
    Yeih, Wei-Chung
    MATERIALS, 2018, 11 (11):