Design and microstructural analysis of the mixture proportion of alkali-activated fly ash-slag composite cementitious material

被引:0
|
作者
Xu, Hongchun [1 ]
Yin, Hang [2 ]
Ge, Pei [3 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Civil Engn & Architecture, Zhengzhou 450046, Peoples R China
[2] Chongqing Univ, Liyang Smart City Res Inst, Chongqing 213300, Peoples R China
[3] China LiaoHe Petr Engn Co Ltd, Panjin 124010, Peoples R China
关键词
slag; fly ash; alkali activation; cementitious material; microstructure; mechanism;
D O I
10.1088/2053-1591/ad9083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To explore the resource utilization of fly ash, slag, and coal gangue, the composition of hydration products and strength characteristics of fly ash-slag composite cementitious material (FSGF) were studied with NaOH as an alkali activator. First, response surface analysis was used to determine factors influencing the optimal NaOH content, basalt fiber dosage, and length to obtain the complete mix ratio of the composite cementitious material. Microscopic techniques such as XRD, FTIR, TG-DSC, and SEM were employed to analyze the crystal structure, thermal properties, and micro-morphology of the composite cementitious material, and to investigate the mechanism of NaOH-activated fly ash-slag cementitious material. The results indicated that the sensitivity of each factor affecting the mechanical properties of the composite cementitious material followed this sequence: NaOH content > basalt fiber length > basalt fiber dosage, with varying degrees of interaction among them. When the mass ratio of fly ash, slag, and coal gangue was 5:1:4, with 3% NaOH by weight, 2% basalt fiber dosage, and a fiber length of 3 mm, the optimal mix was achieved. The composite material achieved a compressive strength of 8.97 MPa after 28 days of standard curing at room temperature. NaOH, as an alkali activator, provided the strong alkaline environment required for the initial hydration of fly ash-slag composite cementitious materials, promoting the hydration of slag and fly ash. The hydration products in the fly ash-slag composite system were unevenly distributed, primarily consisting of gels like C-S-H, C-A-H, and C-A-S-H. NaOH was highly effective as an alkali activator in the fly ash-slag system.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Shrinkage and strength development of alkali-activated fly ash-slag binary cements
    Hojati, Maryam
    Radlinska, Aleksandra
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 150 : 808 - 816
  • [12] Analysis on influencing factors of cadmium contaminated soil solidified by alkali-activated fly ash-slag
    Wang H.
    Zhu Z.
    Pu S.
    Huo W.
    Song W.
    Wan Y.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2021, 51 (06): : 1025 - 1032
  • [13] Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes
    Puertas, F
    Fernández-Jiménez, A
    CEMENT & CONCRETE COMPOSITES, 2003, 25 (03): : 287 - 292
  • [14] Effects of curing environment on strength and microstructure of alkali-activated fly ash-slag binder
    Samantasinghar, Subhashree
    Singh, Suresh
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 235
  • [15] Sulfate resistance of alkali-activated slag/metakaolin/fly ash cementitious materials
    Mei, Junpeng
    Yuan, Chong
    Niu, Yinlong
    Zhang, Jielin
    Li, Shuang
    Li, Hainan
    ZKG INTERNATIONAL, 2024, 77 (01): : 50 - 59
  • [16] Study on Shrinkage in Alkali-Activated Slag-Fly Ash Cementitious Materials
    Cui, Peng
    Wan, Yuanyuan
    Shao, Xuejun
    Ling, Xinyu
    Zhao, Long
    Gong, Yongfan
    Zhu, Chenhui
    MATERIALS, 2023, 16 (11)
  • [17] Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer
    Tu, Wenlin
    Zhu, Yu
    Fang, Guohao
    Wang, Xingang
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2019, 116 : 179 - 190
  • [18] Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review
    Abhishek, H. S.
    Prashant, Shreelaxmi
    Kamath, Muralidhar, V
    Kumar, Mithesh
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2022, 7 (01)
  • [19] Physical, hydrolytic, and mechanical stability of alkali-activated fly ash-slag foam concrete
    Raj, Shubham
    Ramamurthy, K.
    CEMENT & CONCRETE COMPOSITES, 2023, 142
  • [20] Properties of a Lightweight Fly Ash-Slag Alkali-Activated Concrete with Three Strength Grades
    Wang, Huailiang
    Wu, Yuhui
    Wang, Lang
    Chen, Huihua
    Cheng, Baoquan
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 21