Bounding the speedup of the quantum-enhanced Markov-chain Monte Carlo algorithm

被引:0
|
作者
Orfi, Alev [1 ]
Sels, Dries [2 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] NYU, Dept Phys, Ctr Quantum Phenomena, 726 Broadway, New York, NY 10003 USA
关键词
COMPUTATIONAL ADVANTAGE;
D O I
10.1103/PhysRevA.110.052414
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Sampling tasks are a natural class of problems for quantum computers due to the probabilistic nature of the Born rule. Sampling from useful distributions on noisy quantum hardware remains a challenging problem. A recent paper [D. Layden et al., Nature (London) 619, 282 (2023).] proposed a quantum-enhanced Markov-chain Monte Carlo algorithm where moves are generated by a quantum device and accepted or rejected by a classical algorithm. While this procedure is robust to noise and control imperfections, its potential for quantum advantage is unclear. Here we show that there is no speedup over classical sampling on a worst-case unstructured sampling problem. We present an upper bound to the Markov gap that rules out a speedup for any unital quantum proposal.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms
    Casey, Fergal P.
    Waterfall, Joshua J.
    Gutenkunst, Ryan N.
    Myers, Christopher R.
    Sethna, James P.
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [32] Markov chain Monte Carlo estimation of quantum states
    DiGuglielmo, James
    Messenger, Chris
    Fiurasek, Jaromir
    Hage, Boris
    Samblowski, Aiko
    Schmidt, Tabea
    Schnabel, Roman
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [33] Biomass Hydrothermal Carbonization: Markov-Chain Monte Carlo Data Analysis and Modeling
    Gallifuoco, Alberto
    Papa, Alessandro Antonio
    Taglieri, Luca
    FRONTIERS IN CHEMICAL ENGINEERING, 2021, 3
  • [34] BAYESIAN MODEL CHOICE VIA MARKOV-CHAIN MONTE-CARLO METHODS
    CARLIN, BP
    CHIB, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (03): : 473 - 484
  • [35] A Markov Chain Monte Carlo Algorithm for Spatial Segmentation
    Raveendran, Nishanthi
    Sofronov, Georgy
    INFORMATION, 2021, 12 (02) : 1 - 14
  • [36] An automated (Markov chain) Monte Carlo EM algorithm
    Levine, R
    Fan, JJ
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (05) : 349 - 359
  • [37] Parallel and interacting Markov chain Monte Carlo algorithm
    Campillo, Fabien
    Rakotozafy, Rivo
    Rossi, Vivien
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3424 - 3433
  • [38] Discrepancy estimates for variance bounding Markov chain quasi-Monte Carlo
    Dick, Josef
    Rudolf, Daniel
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 24
  • [39] Quantum-enhanced Green's function Monte Carlo algorithm for excited states of the nuclear shell model
    Yang, Yongdan
    Yang, Ruyu
    Xu, Xiaosi
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [40] Classical and quantum cost of measurement strategies for quantum-enhanced auxiliary field quantum Monte Carlo
    Kiser, Matthew
    Schroeder, Anna
    Anselmetti, Gian-Luca R.
    Kumar, Chandan
    Moll, Nikolaj
    Streif, Michael
    Vodola, Davide
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):