On the Local Existence of Solutions to the Fluid-Structure Interaction Problem with a Free Interface

被引:0
|
作者
Kukavica, Igor [1 ]
Li, Linfeng [2 ]
Tuffaha, Amjad [3 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2024年 / 90卷 / 03期
关键词
Fluid-structure interaction; Local existence; Navier-Stokes equations; Wave equation; Trace regularity; NAVIER-STOKES EQUATIONS; BOUNDARY-VALUE-PROBLEMS; WELL-POSEDNESS; WEAK SOLUTIONS; LAME SYSTEM; ELASTIC STRUCTURE; FEEDBACK-CONTROL; RIGID BODIES; REGULARITY; MOTION;
D O I
10.1007/s00245-024-10195-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address a system of equations modeling an incompressible fluid interacting with an elastic body. We prove the local existence when the initial velocity belongs to the space H1.5+& varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1.5+\epsilon }$$\end{document} and the initial structure velocity is in H1+& varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1+\epsilon }$$\end{document}, where & varepsilon;is an element of(0,1/20)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \in (0, 1/20)$$\end{document}.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] BOUNDARY SOLUTIONS FOR FLUID-STRUCTURE INTERACTION
    LIU, PLF
    CHENG, AHD
    JOURNAL OF HYDRAULIC ENGINEERING, 1984, 110 (01) : 51 - 64
  • [22] Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model
    Barbu, Viorel
    Grujic, Zoran
    Lasiecka, Irena
    Tuffaha, Amjad
    Fluids and Waves: Recent Trends in Applied Analysis, 2007, 440 : 55 - 82
  • [23] Local null controllability of a two-dimensional fluid-structure interaction problem
    Boulakia, Muriel
    Osses, Axel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (01) : 1 - 42
  • [24] Analysis of a linear fluid-structure interaction problem
    Du, Q
    Gunzberger, MD
    Hou, LS
    Lee, J
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (03) : 633 - 650
  • [25] Implementation of a Parallel Fluid-Structure Interaction Problem
    Ivanyi, P.
    Topping, B. H. V.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING FOR ENGINEERING, 2009, (90): : 653 - 682
  • [26] On a fluid-structure interaction problem for plaque growth
    Abels, Helmut
    Liu, Yadong
    NONLINEARITY, 2023, 36 (01) : 537 - 583
  • [27] An exact solution of a fluid-structure interaction problem
    Marusic-Paloka, Eduard
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (12):
  • [28] Martingale Solutions in Stochastic Fluid-Structure Interaction
    Breit, Dominic
    Mensah, Prince Romeo
    Moyo, Thamsanqa Castern
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (02)
  • [29] Convergence of successive approximation for a free-boundary problem in fluid-structure interaction
    van Brummelen, EH
    MOVING BOUNDARIES VII: COMPUTATIONAL MODELLING OF FREE AND MOVING BOUNDARY PROBLEMS, 2004, 10 : 119 - 128
  • [30] Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
    Kuan, Jeffrey
    Canic, Suncica
    Muha, Boris
    COMPTES RENDUS MECANIQUE, 2023, 351